diff --git a/joss.07400/10.21105.joss.07400.crossref.xml b/joss.07400/10.21105.joss.07400.crossref.xml new file mode 100644 index 0000000000..0c5baf278f --- /dev/null +++ b/joss.07400/10.21105.joss.07400.crossref.xml @@ -0,0 +1,522 @@ + + + + 20250105191155-2ad461adf4f319a421a90c4d5de9fdb840a4d05b + 20250105191155 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 01 + 2025 + + + 10 + + 105 + + + + cogsworth: A Gala of COSMIC proportions combining binary stellar evolution and galactic dynamics + + + + Tom + Wagg + + Department of Astronomy, University of Washington, Seattle, WA, 98195, USA + Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave, New York, NY, 10010, USA + + https://orcid.org/0000-0001-6147-5761 + + + Katelyn + Breivik + + McWilliams Center for Cosmology and Astrophysics, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA + + https://orcid.org/0000-0001-5228-6598 + + + Mathieu + Renzo + + University of Arizona, Department of Astronomy & Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721, USA + + https://orcid.org/0000-0002-6718-9472 + + + Adrian M. + Price-Whelan + + Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Ave, New York, NY, 10010, USA + + https://orcid.org/0000-0003-0872-7098 + + + + 01 + 05 + 2025 + + + 7400 + + + 10.21105/joss.07400 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.14289112 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/7400 + + + + 10.21105/joss.07400 + https://joss.theoj.org/papers/10.21105/joss.07400 + + + https://joss.theoj.org/papers/10.21105/joss.07400.pdf + + + + + + Stellar multiplicity + Duchêne + Annual Reviews in Astronomy & Astrophysics + 1 + 51 + 10.1146/annurev-astro-081710-102602 + 2013 + Duchêne, G., & Kraus, A. (2013). Stellar multiplicity. Annual Reviews in Astronomy & Astrophysics, 51(1), 269–310. https://doi.org/10.1146/annurev-astro-081710-102602 + + + Mind your Ps and Qs: The interrelation between period (P) and mass-ratio (Q) distributions of binary stars + Moe + The Astrophysical Journal Supplement Series + 2 + 230 + 10.3847/1538-4365/aa6fb6 + 2017 + Moe, M., & Di Stefano, R. (2017). Mind your Ps and Qs: The interrelation between period (P) and mass-ratio (Q) distributions of binary stars. The Astrophysical Journal Supplement Series, 230(2), 15. https://doi.org/10.3847/1538-4365/aa6fb6 + + + The origin and evolution of multiple star systems + Offner + Protostars and planets VII + 534 + 10.48550/arXiv.2203.10066 + 2023 + Offner, S. S. R., Moe, M., Kratter, K. M., Sadavoy, S. I., Jensen, E. L. N., & Tobin, J. J. (2023). The origin and evolution of multiple star systems. In S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura (Eds.), Protostars and planets VII (Vol. 534, p. 275). https://doi.org/10.48550/arXiv.2203.10066 + + + Presupernova evolution in massive interacting binaries + Podsiadlowski + The Astrophysical Journal + 391 + 10.1086/171341 + 1992 + Podsiadlowski, Ph., Joss, P. C., & Hsu, J. J. L. (1992). Presupernova evolution in massive interacting binaries. The Astrophysical Journal, 391, 246. https://doi.org/10.1086/171341 + + + Binary interaction dominates the evolution of massive stars + Sana + Science + 6093 + 337 + 10.1126/science.1223344 + 2012 + Sana, H., de Mink, S. E., de Koter, A., Langer, N., Evans, C. J., & al., et. (2012). Binary interaction dominates the evolution of massive stars. Science, 337(6093), 444. https://doi.org/10.1126/science.1223344 + + + The incidence of stellar mergers and mass gainers among massive stars + de Mink + The Astrophysical Journal + 1 + 782 + 10.1088/0004-637X/782/1/7 + 2014 + de Mink, S. E., Sana, H., Langer, N., Izzard, R. G., & Schneider, F. R. N. (2014). The incidence of stellar mergers and mass gainers among massive stars. The Astrophysical Journal, 782(1), 7. https://doi.org/10.1088/0004-637X/782/1/7 + + + The origin of dwarf galaxies, cold dark matter, and biased galaxy formation + Dekel + The Astrophysical Journal + 303 + 10.1086/164050 + 1986 + Dekel, A., & Silk, J. (1986). The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. The Astrophysical Journal, 303, 39. https://doi.org/10.1086/164050 + + + Stellar feedback in galaxies and the origin of galaxy-scale winds + Hopkins + Monthly Notices of the Royal Astronomical Society + 4 + 421 + 10.1111/j.1365-2966.2012.20593.x + 2012 + Hopkins, P. F., Quataert, E., & Murray, N. (2012). Stellar feedback in galaxies and the origin of galaxy-scale winds. Monthly Notices of the Royal Astronomical Society, 421(4), 3522–3537. https://doi.org/10.1111/j.1365-2966.2012.20593.x + + + Theoretical challenges in galaxy formation + Naab + Annual Reviews in Astronomy & Astrophysics + 1 + 55 + 10.1146/annurev-astro-081913-040019 + 2017 + Naab, T., & Ostriker, J. P. (2017). Theoretical challenges in galaxy formation. Annual Reviews in Astronomy & Astrophysics, 55(1), 59–109. https://doi.org/10.1146/annurev-astro-081913-040019 + + + Nucleosynthesis in stars and the chemical enrichment of galaxies + Nomoto + Annual Reviews in Astronomy & Astrophysics + 1 + 51 + 10.1146/annurev-astro-082812-140956 + 2013 + Nomoto, K., Kobayashi, C., & Tominaga, N. (2013). Nucleosynthesis in stars and the chemical enrichment of galaxies. Annual Reviews in Astronomy & Astrophysics, 51(1), 457–509. https://doi.org/10.1146/annurev-astro-082812-140956 + + + Common envelope evolution + Ivanova + 10.1088/2514-3433/abb6f0 + 2020 + Ivanova, N., Justham, S., & Ricker, P. (2020). Common envelope evolution. https://doi.org/10.1088/2514-3433/abb6f0 + + + Simulations of common-envelope evolution in binary stellar systems: physical models and numerical techniques + Röpke + Living Reviews in Computational Astrophysics + 1 + 9 + 10.1007/s41115-023-00017-x + 2023 + Röpke, F. K., & De Marco, O. (2023). Simulations of common-envelope evolution in binary stellar systems: physical models and numerical techniques. Living Reviews in Computational Astrophysics, 9(1), 2. https://doi.org/10.1007/s41115-023-00017-x + + + Explosion mechanisms of core-collapse supernovae + Janka + Annual Review of Nuclear and Particle Science + 1 + 62 + 10.1146/annurev-nucl-102711-094901 + 2012 + Janka, H.-T. (2012). Explosion mechanisms of core-collapse supernovae. Annual Review of Nuclear and Particle Science, 62(1), 407–451. https://doi.org/10.1146/annurev-nucl-102711-094901 + + + Physical models of galaxy formation in a cosmological framework + Somerville + Annual Reviews in Astronomy & Astrophysics + 53 + 10.1146/annurev-astro-082812-140951 + 2015 + Somerville, R. S., & Davé, R. (2015). Physical models of galaxy formation in a cosmological framework. Annual Reviews in Astronomy & Astrophysics, 53, 51–113. https://doi.org/10.1146/annurev-astro-082812-140951 + + + Runaway stars as progenitors of supernovae and gamma-ray bursts + Eldridge + Monthly Notices of the Royal Astronomical Society + 4 + 414 + 10.1111/j.1365-2966.2011.18650.x + 2011 + Eldridge, J. J., Langer, N., & Tout, C. A. (2011). Runaway stars as progenitors of supernovae and gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 414(4), 3501–3520. https://doi.org/10.1111/j.1365-2966.2011.18650.x + + + Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors + Renzo + Astronomy & Astrophysics + 624 + 10.1051/0004-6361/201833297 + 2019 + Renzo, M., Zapartas, E., de Mink, S. E., Götberg, Y., Justham, S., Farmer, R. J., Izzard, R. G., Toonen, S., & Sana, H. (2019). Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors. Astronomy & Astrophysics, 624, A66. https://doi.org/10.1051/0004-6361/201833297 + + + Deceleration of kicked objects due to the Galactic potential + Disberg + Astronomy & Astrophysics + 687 + 10.1051/0004-6361/202449996 + 2024 + Disberg, P., Gaspari, N., & Levan, A. J. (2024). Deceleration of kicked objects due to the Galactic potential. Astronomy & Astrophysics, 687, A272. https://doi.org/10.1051/0004-6361/202449996 + + + The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks + Repetto + Monthly Notices of the Royal Astronomical Society + 1 + 467 + 10.1093/mnras/stx027 + 2017 + Repetto, S., Igoshev, A. P., & Nelemans, G. (2017). The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks. Monthly Notices of the Royal Astronomical Society, 467(1), 298–310. https://doi.org/10.1093/mnras/stx027 + + + Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries + Mandel + Monthly Notices of the Royal Astronomical Society + 1 + 456 + 10.1093/mnras/stv2733 + 2016 + Mandel, I. (2016). Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries. Monthly Notices of the Royal Astronomical Society, 456(1), 578–581. https://doi.org/10.1093/mnras/stv2733 + + + Investigating stellar-mass black hole kicks + Repetto + Monthly Notices of the Royal Astronomical Society + 4 + 425 + 10.1111/j.1365-2966.2012.21549.x + 2012 + Repetto, S., Davies, M. B., & Sigurdsson, S. (2012). Investigating stellar-mass black hole kicks. Monthly Notices of the Royal Astronomical Society, 425(4), 2799–2809. https://doi.org/10.1111/j.1365-2966.2012.21549.x + + + Constraining the formation of black holes in short-period black hole low-mass X-ray binaries + Repetto + Monthly Notices of the Royal Astronomical Society + 3 + 453 + 10.1093/mnras/stv1753 + 2015 + Repetto, S., & Nelemans, G. (2015). Constraining the formation of black holes in short-period black hole low-mass X-ray binaries. Monthly Notices of the Royal Astronomical Society, 453(3), 3341–3355. https://doi.org/10.1093/mnras/stv1753 + + + A nearby recent supernova that ejected the runaway star \zeta Oph, the pulsar PSR B1706-16, and ^{60}Fe found on Earth + Neuhäuser + Monthly Notices of the Royal Astronomical Society + 1 + 498 + 10.1093/mnras/stz2629 + 2020 + Neuhäuser, R., Gießler, F., & Hambaryan, V. V. (2020). A nearby recent supernova that ejected the runaway star \zeta Oph, the pulsar PSR B1706-16, and ^{60}Fe found on Earth. Monthly Notices of the Royal Astronomical Society, 498(1), 899–917. https://doi.org/10.1093/mnras/stz2629 + + + Core-collapse supernovae in binaries as the origin of galactic hyper-runaway stars + Evans + Monthly Notices of the Royal Astronomical Society + 4 + 497 + 10.1093/mnras/staa2334 + 2020 + Evans, F. A., Renzo, M., & Rossi, E. M. (2020). Core-collapse supernovae in binaries as the origin of galactic hyper-runaway stars. Monthly Notices of the Royal Astronomical Society, 497(4), 5344–5363. https://doi.org/10.1093/mnras/staa2334 + + + On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems + Blaauw + Bulletin of the Astronomical Institutes of the Netherlands + 15 + 1961 + Blaauw, A. (1961). On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bulletin of the Astronomical Institutes of the Netherlands, 15, 265. + + + Common envelope evolution: where we stand and how we can move forward + Ivanova + The Astronomy and Astrophysics Review + 21 + 10.1007/s00159-013-0059-2 + 2013 + Ivanova, N., Justham, S., Chen, X., De Marco, O., Fryer, C. L., Gaburov, E., Ge, H., Glebbeek, E., Han, Z., Li, X.-D., Lu, G., Marsh, T., Podsiadlowski, P., Potter, A., Soker, N., Taam, R., Tauris, T. M., van den Heuvel, E. P. J., & Webbink, R. F. (2013). Common envelope evolution: where we stand and how we can move forward. The Astronomy and Astrophysics Review, 21, 59. https://doi.org/10.1007/s00159-013-0059-2 + + + Intermediate-mass elements in young supernova remnants reveal neutron star kicks by asymmetric explosions + Katsuda + The Astrophysical Journal + 1 + 856 + 10.3847/1538-4357/aab092 + 2018 + Katsuda, S., Morii, M., Janka, H.-T., Wongwathanarat, A., Nakamura, K., Kotake, K., Mori, K., Müller, E., Takiwaki, T., Tanaka, M., Tominaga, N., & Tsunemi, H. (2018). Intermediate-mass elements in young supernova remnants reveal neutron star kicks by asymmetric explosions. The Astrophysical Journal, 856(1), 18. https://doi.org/10.3847/1538-4357/aab092 + + + The evolution of massive binary stars + Marchant + Annual Reviews in Astronomy & Astrophysics + 1 + 62 + 10.1146/annurev-astro-052722-105936 + 2024 + Marchant, P., & Bodensteiner, J. (2024). The evolution of massive binary stars. Annual Reviews in Astronomy & Astrophysics, 62(1), 21–61. https://doi.org/10.1146/annurev-astro-052722-105936 + + + Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction + Zapartas + Astronomy & Astrophysics + 601 + 10.1051/0004-6361/201629685 + 2017 + Zapartas, E., de Mink, S. E., Izzard, R. G., Yoon, S.-C., Badenes, C., Götberg, Y., de Koter, A., Neijssel, C. J., Renzo, M., Schootemeijer, A., & Shrotriya, T. S. (2017). Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction. Astronomy & Astrophysics, 601, A29. https://doi.org/10.1051/0004-6361/201629685 + + + Potential kick velocity distribution of black hole X-ray binaries and implications for natal kicks + Atri + Monthly Notices of the Royal Astronomical Society + 3 + 489 + 10.1093/mnras/stz2335 + 2019 + Atri, P., Miller-Jones, J. C. A., Bahramian, A., Plotkin, R. M., Jonker, P. G., Nelemans, G., Maccarone, T. J., Sivakoff, G. R., Deller, A. T., Chaty, S., Torres, M. A. P., Horiuchi, S., McCallum, J., Natusch, T., Phillips, C. J., Stevens, J., & Weston, S. (2019). Potential kick velocity distribution of black hole X-ray binaries and implications for natal kicks. Monthly Notices of the Royal Astronomical Society, 489(3), 3116–3134. https://doi.org/10.1093/mnras/stz2335 + + + The Galactic underworld: the spatial distribution of compact remnants + Sweeney + Monthly Notices of the Royal Astronomical Society + 4 + 516 + 10.1093/mnras/stac2092 + 2022 + Sweeney, D., Tuthill, P., Sharma, S., & Hirai, R. (2022). The Galactic underworld: the spatial distribution of compact remnants. Monthly Notices of the Royal Astronomical Society, 516(4), 4971–4979. https://doi.org/10.1093/mnras/stac2092 + + + Observing the galactic underworld: predicting photometry and astrometry from compact remnant microlensing events + Sweeney + Monthly Notices of the Royal Astronomical Society + 2 + 531 + 10.1093/mnras/stae1302 + 2024 + Sweeney, D., Tuthill, P., Krone-Martins, A., Mérand, A., Scalzo, R., & Martinod, M.-A. (2024). Observing the galactic underworld: predicting photometry and astrometry from compact remnant microlensing events. Monthly Notices of the Royal Astronomical Society, 531(2), 2433–2447. https://doi.org/10.1093/mnras/stae1302 + + + Rapid stellar and binary population synthesis with COMPAS + Riley + The Astrophysical Journal Supplement Series + 2 + 258 + 10.3847/1538-4365/ac416c + 2022 + Riley, J., Agrawal, P., Barrett, J. W., Boyett, K. N. K., Broekgaarden, F. S., Chattopadhyay, D., Gaebel, S. M., Gittins, F., Hirai, R., Howitt, G., Justham, S., Khandelwal, L., Kummer, F., Lau, M. Y. M., Mandel, I., de Mink, S. E., Neijssel, C., Riley, T., van Son, L., … Team COMPAS. (2022). Rapid stellar and binary population synthesis with COMPAS. The Astrophysical Journal Supplement Series, 258(2), 34. https://doi.org/10.3847/1538-4365/ac416c + + + NIGO: A Numerical Integrator of Galactic Orbits + Rossi + Astronomy and Computing + 12 + 10.1016/j.ascom.2015.03.008 + 2015 + Rossi, L. J. (2015). NIGO: A Numerical Integrator of Galactic Orbits. Astronomy and Computing, 12, 11–20. https://doi.org/10.1016/j.ascom.2015.03.008 + + + Modelling double neutron stars: radio and gravitational waves + Chattopadhyay + Monthly Notices of the Royal Astronomical Society + 2 + 494 + 10.1093/mnras/staa756 + 2020 + Chattopadhyay, D., Stevenson, S., Hurley, J. R., Rossi, L. J., & Flynn, C. (2020). Modelling double neutron stars: radio and gravitational waves. Monthly Notices of the Royal Astronomical Society, 494(2), 1587–1610. https://doi.org/10.1093/mnras/staa756 + + + Modelling neutron star-black hole binaries: future pulsar surveys and gravitational wave detectors + Chattopadhyay + Monthly Notices of the Royal Astronomical Society + 3 + 504 + 10.1093/mnras/stab973 + 2021 + Chattopadhyay, D., Stevenson, S., Hurley, J. R., Bailes, M., & Broekgaarden, F. (2021). Modelling neutron star-black hole binaries: future pulsar surveys and gravitational wave detectors. Monthly Notices of the Royal Astronomical Society, 504(3), 3682–3710. https://doi.org/10.1093/mnras/stab973 + + + Binary population synthesis of the Galactic canonical pulsar population + Song + arXiv e-prints + 10.48550/arXiv.2406.11428 + 2024 + Song, Y., Stevenson, S., & Chattopadhyay, D. (2024). Binary population synthesis of the Galactic canonical pulsar population. arXiv e-Prints, arXiv:2406.11428. https://doi.org/10.48550/arXiv.2406.11428 + + + Constraining black hole natal kicks with astrometric microlensing + Andrews + The Astrophysical Journal + 2 + 930 + 10.3847/1538-4357/ac66d6 + 2022 + Andrews, J. J., & Kalogera, V. (2022). Constraining black hole natal kicks with astrometric microlensing. The Astrophysical Journal, 930(2), 159. https://doi.org/10.3847/1538-4357/ac66d6 + + + The Galactic neutron star population - II. Systemic velocities and merger locations of binary neutron stars + Gaspari + Monthly Notices of the Royal Astronomical Society + 1 + 527 + 10.1093/mnras/stad3259 + 2024 + Gaspari, N., Levan, A. J., Chrimes, A. A., & Nelemans, G. (2024). The Galactic neutron star population - II. Systemic velocities and merger locations of binary neutron stars. Monthly Notices of the Royal Astronomical Society, 527(1), 1101–1113. https://doi.org/10.1093/mnras/stad3259 + + + Kinematic constraints on the ages and kick velocities of Galactic neutron star binaries + Disberg + Astronomy & Astrophysics + 689 + 10.1051/0004-6361/202450790 + 2024 + Disberg, P., Gaspari, N., & Levan, A. J. (2024). Kinematic constraints on the ages and kick velocities of Galactic neutron star binaries. Astronomy & Astrophysics, 689, A348. https://doi.org/10.1051/0004-6361/202450790 + + + Exploring compact binary merger host galaxies and environments with zELDA + Mandhai + Monthly Notices of the Royal Astronomical Society + 2 + 514 + 10.1093/mnras/stac1473 + 2022 + Mandhai, S., Lamb, G. P., Tanvir, N. R., Bray, J., Nixon, C. J., Eyles-Ferris, R. A. J., Levan, A. J., & Gompertz, B. P. (2022). Exploring compact binary merger host galaxies and environments with zELDA. Monthly Notices of the Royal Astronomical Society, 514(2), 2716–2735. https://doi.org/10.1093/mnras/stac1473 + + + Forward modeling of double neutron stars: Insights from highly offset short gamma-ray bursts + Zevin + The Astrophysical Journal + 2 + 904 + 10.3847/1538-4357/abc266 + 2020 + Zevin, M., Kelley, L. Z., Nugent, A., Fong, W., Berry, C. P. L., & Kalogera, V. (2020). Forward modeling of double neutron stars: Insights from highly offset short gamma-ray bursts. The Astrophysical Journal, 904(2), 190. https://doi.org/10.3847/1538-4357/abc266 + + + Binary neutron star merger offsets from their host galaxies: GW 170817 as a case study + Gaspari + Astronomy & Astrophysics + 692 + 10.1051/0004-6361/202450908 + 2024 + Gaspari, N., Stevance, H. F., Levan, A. J., Chrimes, A. A., & Lyman, J. D. (2024). Binary neutron star merger offsets from their host galaxies: GW 170817 as a case study. Astronomy & Astrophysics, 692, A21. https://doi.org/10.1051/0004-6361/202450908 + + + + + + diff --git a/joss.07400/10.21105.joss.07400.pdf b/joss.07400/10.21105.joss.07400.pdf new file mode 100644 index 0000000000..e536a8fd24 Binary files /dev/null and b/joss.07400/10.21105.joss.07400.pdf differ diff --git a/joss.07400/paper.jats/10.21105.joss.07400.jats b/joss.07400/paper.jats/10.21105.joss.07400.jats new file mode 100644 index 0000000000..e617b2a0f2 --- /dev/null +++ b/joss.07400/paper.jats/10.21105.joss.07400.jats @@ -0,0 +1,1124 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +7400 +10.21105/joss.07400 + +cogsworth: A Gala of COSMIC proportions combining binary +stellar evolution and galactic dynamics + + + +https://orcid.org/0000-0001-6147-5761 + +Wagg +Tom + + + + + +https://orcid.org/0000-0001-5228-6598 + +Breivik +Katelyn + + + + +https://orcid.org/0000-0002-6718-9472 + +Renzo +Mathieu + + + + +https://orcid.org/0000-0003-0872-7098 + +Price-Whelan +Adrian M. + + + + + +Department of Astronomy, University of Washington, Seattle, +WA, 98195, USA + + + + +Center for Computational Astrophysics, Flatiron Institute, +162 Fifth Ave, New York, NY, 10010, USA + + + + +McWilliams Center for Cosmology and Astrophysics, +Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, +USA + + + + +University of Arizona, Department of Astronomy & +Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721, +USA + + + + +6 +9 +2024 + +10 +105 +7400 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2025 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +astronomy +binary stellar evolution +galactic dynamics + + + + + + Summary +

We present cogsworth, an open-source Python + tool for producing self-consistent population synthesis and galactic + dynamics simulations. With cogsworth one can + (1) sample a population of binaries and star formation history, (2) + perform rapid (binary) stellar evolution, (3) integrate orbits through + the galaxy and (4) inspect the full evolutionary history of each star + or compact object, as well as its position and kinematics. We include + the functionality for post-processing hydrodynamical zoom-in + simulations as a basis for galactic potentials and star formation + histories to better account for initial spatial stellar clustering and + more complex potentials. Alternatively, several analytical models are + available for both the potential and star formation history. + cogsworth can transform the intrinsic simulated + population into an observed population through the joint application + of dust maps, bolometric correction functions, and survey selection + functions.

+
+ + Statement of need +

The majority of stars are born in binaries and multiple star + systems (e.g., + Duchêne + & Kraus, 2013; + Moe + & Di Stefano, 2017; + Offner + et al., 2023), a large subset of which will exchange mass at + some point in their lives (e.g., + de + Mink et al., 2014; + Podsiadlowski + et al., 1992; + Sana + et al., 2012). These massive stars play a critical role in the + formation and evolution of galaxies as a result of their feedback + (e.g., + Dekel + & Silk, 1986; + Hopkins + et al., 2012; + Naab + & Ostriker, 2017; + Nomoto + et al., 2013; + Somerville + & Davé, 2015). However, binary evolution remains uncertain, + with many parameters such as common-envelope efficiency, mass transfer + efficiency, angular momentum loss due to mass transfer and the mean + magnitude of supernova natal kicks unconstrained over several orders + of magnitude + (Ivanova + et al., 2013; e.g., + Ivanova + et al., 2020; + Janka, + 2012; + Katsuda + et al., 2018; + Marchant + & Bodensteiner, 2024; + Röpke + & De Marco, 2023).

+

Single massive stars are not expected to migrate far from their + birth location before reaching core-collapse due to their short + lifetimes ( + + 50,Myr, + e.g., + Zapartas + et al., 2017). However, binary stars may be disrupted after an + initial supernova event, ejecting the secondary star from the system + at its orbital velocity (e.g., + Blaauw, + 1961; + Eldridge + et al., 2011; + Renzo + et al., 2019). Thus, close massive binaries that are disrupted + can lead to the displacement of secondary stars significantly farther + from star-forming regions. The present-day positions and kinematics of + massive stars and binary products are therefore strongly impacted by + changes in binary physics that alter the pre-supernova separation. + This means that comparing simulations of positions and kinematics of + stars and compact objects to observations will enable constraints on + binary stellar evolution parameters.

+

The use of positions and kinematics as tracers of binary evolution + has been considered in the past. Recent work has shown the importance + of accounting for the galactic potential, which can change the + velocity of kicked objects (e.g. + Disberg + et al., 2024a). It is also important to consider the + inclination or timing of a supernova kick relative to the galactic + orbit, since, for example, a kick out of the galactic plane at an + object’s highest galactic vertical position will have a strong effect + on its final position. Failing to consider impacts from both a + galactic potential and kicks (i.e. velocity impulses) will lead to + misleading conclusions regarding the final spatial distributions of + the population. Some studies have considered using the galactic + potential at the present-day positions of objects to place a lower + limit on the peculiar velocity at birth and constrain supernova kicks + (Atri + et al., 2019; + Repetto + et al., 2012, + 2017; + Repetto + & Nelemans, 2015), but the accuracy of this method is + debated + (Mandel, + 2016). Other works have considered the impact of the galactic + potential for individual special cases, rather than at a population + level. For example, Evans et al. + (2020) + considered the orbits of hyper-runaway candidates evolving through the + Milky Way potential, while Neuhäuser et al. + (2020) + developed software for tracing the motion of stars to investigate the + recent nearby supernovae that ejected + + ζ + Ophiuchi. Andrews & Kalogera + (2022) + considered galactic orbits of synthetic populations to place + constraints on black hole natal kicks based on observations of a + microlensed black hole.

+

Additionally, there are several works that consider a full + population of objects integrated through a galactic potential. Sweeney + et al. + (2022) + and Sweeney et al. + (2024) + used a combination of Galaxia and + galpy to predict the spatial distribution of + black holes and neutron stars in the Milky Way. Similarly, several + works have combined population synthesis with galactic orbit + integration (e.g. using COMPAS, + Riley + et al., 2022; and NIGO, + Rossi, + 2015) to investigate binary neutron stars and pulsars + (Chattopadhyay + et al., 2020, + 2021; + Disberg + et al., 2024b; + Gaspari, + Levan, et al., 2024; + Song + et al., 2024), as well as binary neutron star mergers and short + gamma-ray bursts + (Gaspari, + Stevance, et al., 2024; + Mandhai + et al., 2022; + Zevin + et al., 2020).

+

There is a clear need for a unified open-source tool that provides + the theoretical infrastructure for making predictions for the + positions and kinematics of massive stars and compact objects, placing + these systems in the context of their host galaxy and its + gravitational potential. cogsworth fulfils this + need, providing a framework for self-consistent population synthesis + and galactic dynamics simulations. The code is applicable to a wide + range of binary products, both common and rare, from walkaway and + runaway stars to X-ray binaries, as well as gravitational-wave and + gamma-ray burst progenitors.

+
+ + Acknowledgements +

We gratefully acknowledge many fruitful discussions with Julianne + Dalcanton and Eric Bellm that resulted in several helpful suggestions. + TW acknowledges valuable conversations with Matt Orr and Chris Hayward + regarding the FIRE simulations, and with Alyson Brooks and Akaxia Cruz + regarding the ChaNGa simulations. TW thanks the Simons Foundation, + Flatiron Institute and Center for Computational Astrophysics for + running the pre-doctoral program during which much of this work was + completed. The Flatiron Institute is supported by the Simons + Foundation. TW and KB acknowledge support from NASA ATP grant + 80NSSC24K0768.

+
+ + + + + + + + DuchêneGaspard + KrausAdam + + Stellar multiplicity + Annual Reviews in Astronomy & Astrophysics + 201308 + 51 + 1 + https://arxiv.org/abs/1303.3028 + 10.1146/annurev-astro-081710-102602 + 269 + 310 + + + + + + MoeMaxwell + Di StefanoRosanne + + Mind your Ps and Qs: The interrelation between period (P) and mass-ratio (Q) distributions of binary stars + The Astrophysical Journal Supplement Series + 201706 + 230 + 2 + https://arxiv.org/abs/1606.05347 + 10.3847/1538-4365/aa6fb6 + 15 + + + + + + + OffnerS. S. R. + MoeM. + KratterK. M. + SadavoyS. I. + JensenE. L. N. + TobinJ. J. + + The origin and evolution of multiple star systems + Protostars and planets VII + + InutsukaS. + AikawaY. + MutoT. + TomidaK. + TamuraM. + + 202307 + 534 + https://arxiv.org/abs/2203.10066 + 10.48550/arXiv.2203.10066 + 275 + + + + + + + PodsiadlowskiPh. + JossP. C. + HsuJ. J. L. + + Presupernova evolution in massive interacting binaries + The Astrophysical Journal + 199205 + 391 + 10.1086/171341 + 246 + + + + + + + SanaH. + de MinkS. E. + de KoterA. + LangerN. + EvansC. J. + al. + + Binary interaction dominates the evolution of massive stars + Science + 201207 + 337 + 6093 + https://arxiv.org/abs/1207.6397 + 10.1126/science.1223344 + 444 + + + + + + + de MinkS. E. + SanaH. + LangerN. + IzzardR. G. + SchneiderF. R. N. + + The incidence of stellar mergers and mass gainers among massive stars + The Astrophysical Journal + 201402 + 782 + 1 + https://arxiv.org/abs/1312.3650 + 10.1088/0004-637X/782/1/7 + 7 + + + + + + + DekelA. + SilkJ. + + The origin of dwarf galaxies, cold dark matter, and biased galaxy formation + The Astrophysical Journal + 198604 + 303 + 10.1086/164050 + 39 + + + + + + + HopkinsPhilip F. + QuataertEliot + MurrayNorman + + Stellar feedback in galaxies and the origin of galaxy-scale winds + Monthly Notices of the Royal Astronomical Society + 201204 + 421 + 4 + https://arxiv.org/abs/1110.4638 + 10.1111/j.1365-2966.2012.20593.x + 3522 + 3537 + + + + + + NaabThorsten + OstrikerJeremiah P. + + Theoretical challenges in galaxy formation + Annual Reviews in Astronomy & Astrophysics + 201708 + 55 + 1 + https://arxiv.org/abs/1612.06891 + 10.1146/annurev-astro-081913-040019 + 59 + 109 + + + + + + NomotoKen’ichi + KobayashiChiaki + TominagaNozomu + + Nucleosynthesis in stars and the chemical enrichment of galaxies + Annual Reviews in Astronomy & Astrophysics + 201308 + 51 + 1 + 10.1146/annurev-astro-082812-140956 + 457 + 509 + + + + + + IvanovaNatalia + JusthamStephen + RickerPaul + + Common envelope evolution + 2020 + 10.1088/2514-3433/abb6f0 + + + + + + RöpkeFriedrich K. + De MarcoOrsola + + Simulations of common-envelope evolution in binary stellar systems: physical models and numerical techniques + Living Reviews in Computational Astrophysics + 202312 + 9 + 1 + https://arxiv.org/abs/2212.07308 + 10.1007/s41115-023-00017-x + 2 + + + + + + + JankaHans-Thomas + + Explosion mechanisms of core-collapse supernovae + Annual Review of Nuclear and Particle Science + 201211 + 62 + 1 + https://arxiv.org/abs/1206.2503 + 10.1146/annurev-nucl-102711-094901 + 407 + 451 + + + + + + SomervilleRachel S. + DavéRomeel + + Physical models of galaxy formation in a cosmological framework + Annual Reviews in Astronomy & Astrophysics + 201508 + 53 + https://arxiv.org/abs/1412.2712 + 10.1146/annurev-astro-082812-140951 + 51 + 113 + + + + + + EldridgeJohn J. + LangerNorbert + ToutChristopher A. + + Runaway stars as progenitors of supernovae and gamma-ray bursts + Monthly Notices of the Royal Astronomical Society + 201107 + 414 + 4 + https://arxiv.org/abs/1103.1877 + 10.1111/j.1365-2966.2011.18650.x + 3501 + 3520 + + + + + + RenzoM. + ZapartasE. + de MinkS. E. + GötbergY. + JusthamS. + FarmerR. J. + IzzardR. G. + ToonenS. + SanaH. + + Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors + Astronomy & Astrophysics + 201904 + 624 + https://arxiv.org/abs/1804.09164 + 10.1051/0004-6361/201833297 + A66 + + + + + + + DisbergP. + GaspariN. + LevanA. J. + + Deceleration of kicked objects due to the Galactic potential + Astronomy & Astrophysics + 202407 + 687 + https://arxiv.org/abs/2405.06436 + 10.1051/0004-6361/202449996 + A272 + + + + + + + RepettoSerena + IgoshevAndrei P. + NelemansGijs + + The Galactic distribution of X-ray binaries and its implications for compact object formation and natal kicks + Monthly Notices of the Royal Astronomical Society + 201705 + 467 + 1 + https://arxiv.org/abs/1701.01347 + 10.1093/mnras/stx027 + 298 + 310 + + + + + + MandelIlya + + Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries + Monthly Notices of the Royal Astronomical Society + 201602 + 456 + 1 + https://arxiv.org/abs/1510.03871 + 10.1093/mnras/stv2733 + 578 + 581 + + + + + + RepettoSerena + DaviesMelvyn B. + SigurdssonSteinn + + Investigating stellar-mass black hole kicks + Monthly Notices of the Royal Astronomical Society + 201210 + 425 + 4 + https://arxiv.org/abs/1203.3077 + 10.1111/j.1365-2966.2012.21549.x + 2799 + 2809 + + + + + + RepettoSerena + NelemansGijs + + Constraining the formation of black holes in short-period black hole low-mass X-ray binaries + Monthly Notices of the Royal Astronomical Society + 201511 + 453 + 3 + https://arxiv.org/abs/1507.08105 + 10.1093/mnras/stv1753 + 3341 + 3355 + + + + + + NeuhäuserR. + GießlerF. + HambaryanV. V. + + A nearby recent supernova that ejected the runaway star \zeta Oph, the pulsar PSR B1706-16, and ^{60}Fe found on Earth + Monthly Notices of the Royal Astronomical Society + 202010 + 498 + 1 + https://arxiv.org/abs/1909.06850 + 10.1093/mnras/stz2629 + 899 + 917 + + + + + + EvansF. A. + RenzoM. + RossiE. M. + + Core-collapse supernovae in binaries as the origin of galactic hyper-runaway stars + Monthly Notices of the Royal Astronomical Society + 202010 + 497 + 4 + https://arxiv.org/abs/2006.00849 + 10.1093/mnras/staa2334 + 5344 + 5363 + + + + + + BlaauwA. + + On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems + Bulletin of the Astronomical Institutes of the Netherlands + 196105 + 15 + 265 + + + + + + + IvanovaNatalia + JusthamS. + ChenX. + De MarcoO. + FryerC. L. + GaburovE. + GeH. + GlebbeekE. + HanZ. + LiX. -D. + LuG. + MarshT. + PodsiadlowskiP. + PotterA. + SokerN. + TaamR. + TaurisT. M. + van den HeuvelE. P. J. + WebbinkR. F. + + Common envelope evolution: where we stand and how we can move forward + The Astronomy and Astrophysics Review + 201302 + 21 + https://arxiv.org/abs/1209.4302 + 10.1007/s00159-013-0059-2 + 59 + + + + + + + KatsudaSatoru + MoriiMikio + JankaHans-Thomas + WongwathanaratAnnop + NakamuraKo + KotakeKei + MoriKoji + MüllerEwald + TakiwakiTomoya + TanakaMasaomi + TominagaNozomu + TsunemiHiroshi + + Intermediate-mass elements in young supernova remnants reveal neutron star kicks by asymmetric explosions + The Astrophysical Journal + 201803 + 856 + 1 + https://arxiv.org/abs/1710.10372 + 10.3847/1538-4357/aab092 + 18 + + + + + + + MarchantPablo + BodensteinerJulia + + The evolution of massive binary stars + Annual Reviews in Astronomy & Astrophysics + 202409 + 62 + 1 + https://arxiv.org/abs/2311.01865 + 10.1146/annurev-astro-052722-105936 + 21 + 61 + + + + + + ZapartasE. + de MinkS. E. + IzzardR. G. + YoonS.-C. + BadenesC. + GötbergY. + de KoterA. + NeijsselC. J. + RenzoM. + SchootemeijerA. + ShrotriyaT. S. + + Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction + Astronomy & Astrophysics + 201705 + 601 + https://arxiv.org/abs/1701.07032 + 10.1051/0004-6361/201629685 + A29 + + + + + + + AtriP. + Miller-JonesJ. C. A. + BahramianA. + PlotkinR. M. + JonkerP. G. + NelemansG. + MaccaroneT. J. + SivakoffG. R. + DellerA. T. + ChatyS. + TorresM. A. P. + HoriuchiS. + McCallumJ. + NatuschT. + PhillipsC. J. + StevensJ. + WestonS. + + Potential kick velocity distribution of black hole X-ray binaries and implications for natal kicks + Monthly Notices of the Royal Astronomical Society + 201911 + 489 + 3 + https://arxiv.org/abs/1908.07199 + 10.1093/mnras/stz2335 + 3116 + 3134 + + + + + + SweeneyDavid + TuthillPeter + SharmaSanjib + HiraiRyosuke + + The Galactic underworld: the spatial distribution of compact remnants + Monthly Notices of the Royal Astronomical Society + 202211 + 516 + 4 + https://arxiv.org/abs/2210.04241 + 10.1093/mnras/stac2092 + 4971 + 4979 + + + + + + SweeneyDavid + TuthillPeter + Krone-MartinsAlberto + MérandAntoine + ScalzoRichard + MartinodMarc-Antoine + + Observing the galactic underworld: predicting photometry and astrometry from compact remnant microlensing events + Monthly Notices of the Royal Astronomical Society + 202406 + 531 + 2 + https://arxiv.org/abs/2403.14612 + 10.1093/mnras/stae1302 + 2433 + 2447 + + + + + + RileyJeff + AgrawalPoojan + BarrettJim W. + BoyettKristan N. K. + BroekgaardenFloor S. + ChattopadhyayDebatri + GaebelSebastian M. + GittinsFabian + HiraiRyosuke + HowittGeorge + JusthamStephen + KhandelwalLokesh + KummerFloris + LauMike Y. M. + MandelIlya + de MinkSelma E. + NeijsselCoenraad + RileyTim + van SonLieke + StevensonSimon + Vigna-GómezAlejandro + VinciguerraSerena + WaggTom + WillcoxReinhold + Team COMPAS + + Rapid stellar and binary population synthesis with COMPAS + The Astrophysical Journal Supplement Series + 202202 + 258 + 2 + https://arxiv.org/abs/2109.10352 + 10.3847/1538-4365/ac416c + 34 + + + + + + + RossiL. J. + + NIGO: A Numerical Integrator of Galactic Orbits + Astronomy and Computing + 201509 + 12 + 10.1016/j.ascom.2015.03.008 + 11 + 20 + + + + + + ChattopadhyayDebatri + StevensonSimon + HurleyJarrod R. + RossiLuca J. + FlynnChris + + Modelling double neutron stars: radio and gravitational waves + Monthly Notices of the Royal Astronomical Society + 202005 + 494 + 2 + https://arxiv.org/abs/1912.02415 + 10.1093/mnras/staa756 + 1587 + 1610 + + + + + + ChattopadhyayDebatri + StevensonSimon + HurleyJarrod R. + BailesMatthew + BroekgaardenFloor + + Modelling neutron star-black hole binaries: future pulsar surveys and gravitational wave detectors + Monthly Notices of the Royal Astronomical Society + 202107 + 504 + 3 + https://arxiv.org/abs/2011.13503 + 10.1093/mnras/stab973 + 3682 + 3710 + + + + + + SongYuzhe + StevensonSimon + ChattopadhyayDebatri + + Binary population synthesis of the Galactic canonical pulsar population + arXiv e-prints + 202406 + https://arxiv.org/abs/2406.11428 + 10.48550/arXiv.2406.11428 + arXiv:2406.11428 + + + + + + + AndrewsJeff J. + KalogeraVicky + + Constraining black hole natal kicks with astrometric microlensing + The Astrophysical Journal + 202205 + 930 + 2 + https://arxiv.org/abs/2203.15156 + 10.3847/1538-4357/ac66d6 + 159 + + + + + + + GaspariN. + LevanAndrew J. + ChrimesAshley A. + NelemansGijs + + The Galactic neutron star population - II. Systemic velocities and merger locations of binary neutron stars + Monthly Notices of the Royal Astronomical Society + 202401 + 527 + 1 + https://arxiv.org/abs/2310.14773 + 10.1093/mnras/stad3259 + 1101 + 1113 + + + + + + DisbergP. + GaspariN. + LevanA. J. + + Kinematic constraints on the ages and kick velocities of Galactic neutron star binaries + Astronomy & Astrophysics + 202409 + 689 + https://arxiv.org/abs/2407.13667 + 10.1051/0004-6361/202450790 + A348 + + + + + + + MandhaiS. + LambG. P. + TanvirN. R. + BrayJ. + NixonC. J. + Eyles-FerrisR. A. J. + LevanA. J. + GompertzB. P. + + Exploring compact binary merger host galaxies and environments with zELDA + Monthly Notices of the Royal Astronomical Society + 202208 + 514 + 2 + https://arxiv.org/abs/2109.09714 + 10.1093/mnras/stac1473 + 2716 + 2735 + + + + + + ZevinMichael + KelleyLuke Zoltan + NugentAnya + FongWen-fai + BerryChristopher P. L. + KalogeraVicky + + Forward modeling of double neutron stars: Insights from highly offset short gamma-ray bursts + The Astrophysical Journal + 202012 + 904 + 2 + https://arxiv.org/abs/1910.03598 + 10.3847/1538-4357/abc266 + 190 + + + + + + + GaspariN. + StevanceH. F. + LevanA. J. + ChrimesA. A. + LymanJ. D. + + Binary neutron star merger offsets from their host galaxies: GW 170817 as a case study + Astronomy & Astrophysics + 202412 + 692 + https://arxiv.org/abs/2410.19480 + 10.1051/0004-6361/202450908 + A21 + + + + + +