diff --git a/joss.05820/10.21105.joss.05820.crossref.xml b/joss.05820/10.21105.joss.05820.crossref.xml new file mode 100644 index 0000000000..862fec55f9 --- /dev/null +++ b/joss.05820/10.21105.joss.05820.crossref.xml @@ -0,0 +1,480 @@ + + + + 20231130T161219-2d4f39c93183d9709a37b856bf6e2de9aff87c08 + 20231130161219 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 11 + 2023 + + + 8 + + 91 + + + + SphericalScattering: A Julia Package for +Electromagnetic Scattering from Spherical Objects + + + + Bernd + Hofmann + https://orcid.org/0000-0003-1435-6203 + + + Paula + Respondek + https://orcid.org/0009-0005-4892-2711 + + + Simon B. + Adrian + https://orcid.org/0000-0001-8008-6235 + + + + 11 + 30 + 2023 + + + 5820 + + + 10.21105/joss.05820 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.10211642 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/5820 + + + + 10.21105/joss.05820 + https://joss.theoj.org/papers/10.21105/joss.05820 + + + https://joss.theoj.org/papers/10.21105/joss.05820.pdf + + + + + + Theory and computation of electromagnetic +fields + Jin + 978-1-119-10804-7 + 2015 + Jin, J.-M. (2015). Theory and +computation of electromagnetic fields (Second edition). John Wiley & +Sons, Inc. ISBN: 978-1-119-10804-7 + + + Radar cross section handbook + Ruck + 1 + 978-1-4899-5326-1 + 1970 + Ruck, G. T., Barrick, D. E., Stuart, +W. D., & Krichbaum, C. K. (1970). Radar cross section handbook (Vol. +1). Plenum Press. ISBN: 978-1-4899-5326-1 + + + Transmission line analogy for calculating the +effective permittivity of mixtures with spherical multilayer +scatterers + Sihvola + Journal of Electromagnetic Waves and +Applications + 8 + 2 + 1988 + Sihvola, A., & Lindell, I. V. +(1988). Transmission line analogy for calculating the effective +permittivity of mixtures with spherical multilayer scatterers. Journal +of Electromagnetic Waves and Applications, 2(8), 741–756. +https://www.tandfonline.com/doi/abs/10.1163/156939388X00044 + + + Spherical near-field antenna +measurements + Hansen + 978-0-86341-110-6 + 1988 + Hansen, J. E. (1988). Spherical +near-field antenna measurements. The Institution of Engineering; +Technology. ISBN: 978-0-86341-110-6 + + + Classical electrodynamics + Jackson + 0-471-30932-X + 1999 + Jackson, J. D. (1999). Classical +electrodynamics. Wiley. ISBN: 0-471-30932-X + + + Models for layered spherical +particles + Jones + Electromechanics of Particles + 10.1017/CBO9780511574498 + 1995 + Jones, T. B. (1995). Models for +layered spherical particles. Electromechanics of Particles, 227–235. +https://doi.org/10.1017/CBO9780511574498 + + + An excitation-aware and self-adaptive +frequency normalization for low-frequency stabilized electric field +integral equation formulations + Hofmann + IEEE Transactions on Antennas and +Propagation + 5 + 71 + 10.1109/TAP.2023.3247896 + 2023 + Hofmann, B., Eibert, T. F., +Andriulli, F. P., & Adrian, S. B. (2023). An excitation-aware and +self-adaptive frequency normalization for low-frequency stabilized +electric field integral equation formulations. IEEE Transactions on +Antennas and Propagation, 71(5), 4301–4314. +https://doi.org/10.1109/TAP.2023.3247896 + + + A low-frequency stable, excitation agnostic +discretization of the right-hand side for the electric field integral +equation on multiply-connected geometries + Hofmann + IEEE Transactions on Antennas and +Propagation + 10.1109/TAP.2023.3234704 + 2023 + Hofmann, B., Eibert, T. F., +Andriulli, F. P., & Adrian, S. B. (2023). A low-frequency stable, +excitation agnostic discretization of the right-hand side for the +electric field integral equation on multiply-connected geometries. IEEE +Transactions on Antennas and Propagation. +https://doi.org/10.1109/TAP.2023.3234704 + + + Investigations on the low-frequency stability +of inverse surface source field transformations based on the electric +field integral operator + Hofmann + 17th european conference on antennas and +propagation (EuCAP) + 10.23919/EuCAP57121.2023.10133154 + 2023 + Hofmann, B., Eibert, T. F., +Andriulli, F. P., & Adrian, S. B. (2023, March). Investigations on +the low-frequency stability of inverse surface source field +transformations based on the electric field integral operator. 17th +European Conference on Antennas and Propagation (EuCAP). +https://doi.org/10.23919/EuCAP57121.2023.10133154 + + + Low-frequency stable discretization of the +electric field integral equation based on Poincaré’s +lemma + Hofmann + Proc. IEEE antennas propag. Soc. Int. Symp. +URSI nat. Radio sci. meeting + 10.1109/APS/URSI47566.2021.9703799 + 2021 + Hofmann, B., Eibert, T. F., +Andriulli, F. P., & Adrian, S. B. (2021, December). Low-frequency +stable discretization of the electric field integral equation based on +Poincaré’s lemma. Proc. IEEE Antennas Propag. Soc. Int. Symp. URSI Nat. +Radio Sci. Meeting. +https://doi.org/10.1109/APS/URSI47566.2021.9703799 + + + Low-frequency-stabilized electric field +integral equation on topologically non-trivial geometries for arbitrary +excitations + Hofmann + Proc. IEEE antennas propag. Soc. Int. Symp. +URSI nat. Radio sci. meeting + 10.1109/AP-S/USNC-URSI47032.2022.9886833 + 2022 + Hofmann, B., Eibert, T. F., +Andriulli, F. P., & Adrian, S. B. (2022). Low-frequency-stabilized +electric field integral equation on topologically non-trivial geometries +for arbitrary excitations. Proc. IEEE Antennas Propag. Soc. Int. Symp. +URSI Nat. Radio Sci. Meeting, 1938–1939. +https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886833 + + + Efficient combination of scalar-potential +representations of solenoidal functions and quasi-Helmholtz +projectors + Hofmann + 16th european conference on antennas and +propagation (EuCAP) + 10.23919/EuCAP53622.2022.9769650 + 2022 + Hofmann, B., Eibert, T. F., +Andriulli, F. P., & Adrian, S. B. (2022, March). Efficient +combination of scalar-potential representations of solenoidal functions +and quasi-Helmholtz projectors. 16th European Conference on Antennas and +Propagation (EuCAP). +https://doi.org/10.23919/EuCAP53622.2022.9769650 + + + Towards a self-adaptive frequency +normalization scheme for the low-frequency stabilized magnetic field +integral equation + Hofmann + Proc. IEEE antennas propag. Soc. Int. Symp. +URSI nat. Radio sci. meeting + 10.1109/USNC-URSI52151.2023.10238214 + 2023 + Hofmann, B., Eibert, T. F., +Andriulli, F. P., & Adrian, S. B. (2023). Towards a self-adaptive +frequency normalization scheme for the low-frequency stabilized magnetic +field integral equation. Proc. IEEE Antennas Propag. Soc. Int. Symp. +URSI Nat. Radio Sci. Meeting, 1213–1214. +https://doi.org/10.1109/USNC-URSI52151.2023.10238214 + + + Electromagnetic integral equations: Insights +in conditioning and preconditioning + Adrian + IEEE Open Journal of Antennas and +Propagation + 10.1109/OJAP.2021.3121097 + 2021 + Adrian, S. B., Dély, A., Consoli, D., +Merlini, A., & Andriulli, F. P. (2021). Electromagnetic integral +equations: Insights in conditioning and preconditioning. IEEE Open +Journal of Antennas and Propagation, 1143–1174. +https://doi.org/10.1109/OJAP.2021.3121097 + + + Julia: A fresh approach to numerical +computing + Bezanson + SIAM review + 1 + 59 + 10.1137/141000671 + 2017 + Bezanson, J., Edelman, A., Karpinski, +S., & Shah, V. B. (2017). Julia: A fresh approach to numerical +computing. SIAM Review, 59(1), 65–98. +https://doi.org/10.1137/141000671 + + + Field computation by moment +methods + Harrington + 978-0-7803-1014-8 + 1993 + Harrington, R. F. (1993). Field +computation by moment methods (Reprint Edition). Wiley-IEEE Press. +ISBN: 978-0-7803-1014-8 + + + ParticleScattering: Solving and optimizing +multiple-scattering problems in Julia + Blankrot + Journal of Open Source +Software + 25 + 3 + 10.21105/joss.00691 + 2018 + Blankrot, B., & Heitzinger, C. +(2018). ParticleScattering: Solving and optimizing multiple-scattering +problems in Julia. Journal of Open Source Software, 3(25), 691. +https://doi.org/10.21105/joss.00691 + + + miepython: Pure Python implementation of Mie +scattering + Prahl + 10.5281/zenodo.7949263 + 2023 + Prahl, S. (2023). miepython: Pure +Python implementation of Mie scattering. Zenodo. +https://doi.org/10.5281/zenodo.7949263 + + + Scattnlay + Ladutenko + 10.5281/zenodo.248729 + 2017 + Ladutenko, K., Rodríguez, O. P., +Müller, P., & Badger, T. G. (2017). Scattnlay (Version v2.0.1). +Zenodo. https://doi.org/10.5281/zenodo.248729 + + + Electromagnetic scattering by surfaces of +arbitrary shape + Rao + IEEE Transactions on Antennas and +Propagation + 3 + 30 + 10.1109/TAP.1982.1142818 + 1982 + Rao, S., Wilton, D., & Glisson, +A. (1982). Electromagnetic scattering by surfaces of arbitrary shape. +IEEE Transactions on Antennas and Propagation, 30(3), 409–418. +https://doi.org/10.1109/TAP.1982.1142818 + + + MultipleScattering.jl + Gower + 10.5281/zenodo.1213225 + 2018 + Gower, A., & Deakin, J. (2018). +MultipleScattering.jl (Version v0.1.1). Zenodo. +https://doi.org/10.5281/zenodo.1213225 + + + EffectiveWaves + Gower + GitHub repository + 2020 + Gower, A. (2020). EffectiveWaves. In +GitHub repository. GitHub. +https://github.com/JuliaWaveScattering/EffectiveWaves.jl + + + MatScat + Schäfer + MATLAB Central File Exchange + 2023 + Schäfer, J. (2023). MatScat. In +MATLAB Central File Exchange. MATLAB. +https://www.mathworks.com/matlabcentral/fileexchange/36831-matscat + + + Mie electric field simulation for +spheres + Walter + MATLAB Central File Exchange + 2023 + Walter, N. (2023). Mie electric field +simulation for spheres. In MATLAB Central File Exchange. MATLAB. +https://www.mathworks.com/matlabcentral/fileexchange/66845-mie-electric-field-simulation-for-spheres + + + Pymiecoated + Leinonen + GitHub repository + 2016 + Leinonen, J. (2016). Pymiecoated. In +GitHub repository. GitHub. +https://github.com/jleinonen/pymiecoated/tree/master + + + MieScattering + Wu + GitHub repository + 2023 + Wu, G. (2023). MieScattering. In +GitHub repository. GitHub. +https://github.com/JuliaRemoteSensing/MieScattering.jl + + + Cppmie + chillin-capybara + GitHub repository + 2022 + chillin-capybara. (2022). Cppmie. In +GitHub repository. GitHub. +https://github.com/chillin-capybara/cppmie + + + TERMS + Schebarchov + 10.5281/zenodo.5703291 + 2021 + Schebarchov, D., Fazel-Najafabadi, +A., Le Ru, E., & Auguié, B. (2021). TERMS (Version 1.0.0). Zenodo. +https://doi.org/10.5281/zenodo.5703291 + + + MiePy + Parker + GitHub repository + 2022 + Parker, J. (2022). MiePy. In GitHub +repository. GitHub. +https://github.com/johnaparker/miepy + + + CELES: CUDA-accelerated simulation of +electromagnetic scattering by large ensembles of spheres + Egel + Journal of Quantitative Spectroscopy and +Radiative Transfer + 199 + 10.1016/j.jqsrt.2017.05.010 + 0022-4073 + Egel, A., Pattelli, L., Mazzamuto, +G., Wiersma, D. S., & Lemmer, U. (2017-09). CELES: CUDA-accelerated +simulation of electromagnetic scattering by large ensembles of spheres. +Journal of Quantitative Spectroscopy and Radiative Transfer, 199, +103–110. +https://doi.org/10.1016/j.jqsrt.2017.05.010 + + + STRATIFY: A comprehensive and versatile +MATLAB code for a multilayered sphere + Rasskazov + OSA Continuum + 8 + 3 + 10.1364/OSAC.399979 + 2020 + Rasskazov, I. L., Carney, P. S., +& Moroz, A. (2020). STRATIFY: A comprehensive and versatile MATLAB +code for a multilayered sphere. OSA Continuum, 3(8), 2290–2306. +https://doi.org/10.1364/OSAC.399979 + + + + + + diff --git a/joss.05820/10.21105.joss.05820.jats b/joss.05820/10.21105.joss.05820.jats new file mode 100644 index 0000000000..27660e18c4 --- /dev/null +++ b/joss.05820/10.21105.joss.05820.jats @@ -0,0 +1,700 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +5820 +10.21105/joss.05820 + +SphericalScattering: A Julia Package for Electromagnetic +Scattering from Spherical Objects + + + +https://orcid.org/0000-0003-1435-6203 + +Hofmann +Bernd + + +* + + +https://orcid.org/0009-0005-4892-2711 + +Respondek +Paula + + + + +https://orcid.org/0000-0001-8008-6235 + +Adrian +Simon B. + + + + + +Department of Electrical Engineering, School of +Computation, Information and Technology, Technical University of Munich, +80290 Munich, Germany + + + + +Fakultät für Informatik und Elektrotechnik, Universität +Rostock, 18059 Rostock, Germany + + + + +* E-mail: + + +13 +6 +2023 + +8 +91 +5820 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Julia +dipole +electromagnetics +field theory +Mie scattering +plane wave +ring-current +sphere +spherical waves +time-harmonic + + + + + + Summary +

When electromagnetic fields are impinging on objects of various + kinds, determining the scattered field as a solution to Maxwell’s + equations is crucial for many applications. For example, when + monitoring the position of an airplane by a radar, the scattering + behavior of the airplane plays a pivotal role and, thus, needs to be + studied. Analytical approaches, however, to characterize such + scattering behavior are rarely known. Some of the few exceptions where + at least semi-analytical descriptions are available are metallic or + dielectric spherical objects excited by time-harmonic or static fields + (Jin, + 2015; + Ruck + et al., 1970). In some applications, these canonical scattering + problems are the study subject of interest. In other areas, solutions + to the scattering from spherical objects rather serve as a means to + verify the correctness of more involved numerical techniques, which + allow to analyze the scattering from real-world objects, for instance, + via finite element or integral equation methods + (Adrian + et al., 2021; + Harrington, + 1993; + Jin, + 2015; + Rao + et al., 1982). Hence, semi-analytical descriptions for the + scattering from spherical objects facilitate a reproducible and + comparable verification of approaches to solve electromagnetic + scattering problems.

+
+ + Statement of need +

SphericalScattering is a Julia package + (Bezanson + et al., 2017) providing semi-analytical solutions to the + scattering of time-harmonic as well as static electromagnetic fields + from spherical objects (including the Mie solutions for plane wave + excitations). To this end, series expansions are evaluated with + special care to obtain accurate solutions down to the static limit. + The series expansions are based on expressing the incident and + scattered fields in terms of spherical wave functions such that the + boundary conditions can be enforced at interfaces of different + materials yielding the expansion coefficients of the spherical wave + functions of the scattered field + (Jin, + 2015; + Ruck + et al., 1970).

+

Other available implementations have a different focus, that is, + specific 2D scenarios are addressed + (Blankrot + & Heitzinger, 2018), T-matrices are employed for general + shaped objects + (Egel + et al., 2017-09; + Art + Gower & Deakin, 2018; + Parker, + 2022; + Schebarchov + et al., 2021), ensemble averaged waves are obtained + (Artur + Gower, 2020), spontaneous decay rates of a dipole are studied + (Rasskazov + et al., 2020), light scattering is considered employing only + plane waves as excitations + (chillin-capybara, + 2022; + Ladutenko + et al., 2017; + Leinonen, + 2016; + Prahl, + 2023; + Schäfer, + 2023; + Walter, + 2023; + Wu, + 2023), or only far-field quantities are computed.

+

In contrast, in SphericalScattering a + variety of excitations is available, that is,

+ + +

plane waves,

+
+ +

fields of electric/magnetic ring currents,

+
+ +

fields of electric/magnetic dipoles,

+
+ +

transverse electric (TE) and transverse magnetic (TM) spherical + vector waves, and

+
+ +

uniform static electric fields,

+
+
+

where several parameters including the orientation, direction, or + polarization of the sources can be set by the user and are not + predefined. The scattered far- and near-fields are then obtained + following + (Hansen, + 1988; + Jackson, + 1999; + Jin, + 2015; + Jones, + 1995; + Ruck + et al., 1970; + Sihvola + & Lindell, 1988) for

+ + +

perfectly electrically conducting (PEC) spheres and

+
+ +

dielectric spheres

+
+
+

all via a unified interface. In consequence, + SphericalScattering is a useful (code-) + verification tool in the area of electromagnetic scattering for a wide + range of scenarios. For this purpose, it has already been employed in + scientific publications + (Hofmann + et al., 2022a, + 2023a, + 2021, + 2022b, + 2023b, + 2023c, + 2023d).

+
+ + Acknowledgments +

Paula Respondek and Simon B. Adrian were funded by the Deutsche + Forschungsgemeinschaft (DFG; German Research Foundation) under Grant + SFB 1270/2-299150580.

+
+ + + + + + + JinJian-Ming + + Theory and computation of electromagnetic fields + John Wiley & Sons, Inc + Hoboken, New Jersey + 2015 + Second edition + 978-1-119-10804-7 + + + + + + RuckGeorge T + BarrickDonald E + StuartWilliam D + KrichbaumClarence K + + Radar cross section handbook + Plenum Press + New York + 1970 + 1 + 978-1-4899-5326-1 + + + + + + SihvolaA. + LindellI. V. + + Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers + Journal of Electromagnetic Waves and Applications + Taylor & Francis + 19880101 + 2 + 8 + https://www.tandfonline.com/doi/abs/10.1163/156939388X00044 + 741 + 756 + + + + + + HansenJ. E. + + Spherical near-field antenna measurements + The Institution of Engineering; Technology + Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK + 1988 + 978-0-86341-110-6 + + + + + + JacksonJ. D. + + Classical electrodynamics + Wiley + New York + 1999 + 0-471-30932-X + + + + + + JonesT. B. + + Models for layered spherical particles + Electromechanics of Particles + Cambridge University Press + 1995 + 10.1017/CBO9780511574498 + 227 + 235 + + + + + + HofmannBernd + EibertThomas F. + AndriulliFrancesco P. + AdrianSimon B. + + An excitation-aware and self-adaptive frequency normalization for low-frequency stabilized electric field integral equation formulations + IEEE Transactions on Antennas and Propagation + 202305 + 71 + 5 + 10.1109/TAP.2023.3247896 + 4301 + 4314 + + + + + + HofmannBernd + EibertThomas F. + AndriulliFrancesco P. + AdrianSimon B. + + A low-frequency stable, excitation agnostic discretization of the right-hand side for the electric field integral equation on multiply-connected geometries + IEEE Transactions on Antennas and Propagation + 2023 + 10.1109/TAP.2023.3234704 + + + + + + HofmannBernd + EibertThomas F. + AndriulliFrancesco P. + AdrianSimon B. + + Investigations on the low-frequency stability of inverse surface source field transformations based on the electric field integral operator + 17th european conference on antennas and propagation (EuCAP) + 202303 + 10.23919/EuCAP57121.2023.10133154 + + + + + + HofmannBernd + EibertThomas F. + AndriulliFrancesco P. + AdrianSimon B. + + Low-frequency stable discretization of the electric field integral equation based on Poincaré’s lemma + Proc. IEEE antennas propag. Soc. Int. Symp. URSI nat. Radio sci. meeting + IEEE + Singapore + 202112 + 10.1109/APS/URSI47566.2021.9703799 + + + + + + HofmannBernd + EibertThomas F. + AndriulliFrancesco P. + AdrianSimon B. + + Low-frequency-stabilized electric field integral equation on topologically non-trivial geometries for arbitrary excitations + Proc. IEEE antennas propag. Soc. Int. Symp. URSI nat. Radio sci. meeting + 202207 + 10.1109/AP-S/USNC-URSI47032.2022.9886833 + 1938 + 1939 + + + + + + HofmannBernd + EibertThomas F. + AndriulliFrancesco P. + AdrianSimon B. + + Efficient combination of scalar-potential representations of solenoidal functions and quasi-Helmholtz projectors + 16th european conference on antennas and propagation (EuCAP) + 202203 + 10.23919/EuCAP53622.2022.9769650 + + + + + + HofmannBernd + EibertThomas F. + AndriulliFrancesco P. + AdrianSimon B. + + Towards a self-adaptive frequency normalization scheme for the low-frequency stabilized magnetic field integral equation + Proc. IEEE antennas propag. Soc. Int. Symp. URSI nat. Radio sci. meeting + 202307 + 10.1109/USNC-URSI52151.2023.10238214 + 1213 + 1214 + + + + + + AdrianSimon B. + DélyAlexandre + ConsoliDavide + MerliniAdrien + AndriulliFrancesco P. + + Electromagnetic integral equations: Insights in conditioning and preconditioning + IEEE Open Journal of Antennas and Propagation + 202110 + 10.1109/OJAP.2021.3121097 + 1143 + 1174 + + + + + + BezansonJeff + EdelmanAlan + KarpinskiStefan + ShahViral B + + Julia: A fresh approach to numerical computing + SIAM review + Society of Industrial; Applied Mathematics + 2017 + 59 + 1 + 10.1137/141000671 + 65 + 98 + + + + + + HarringtonRoger F. + + Field computation by moment methods + Wiley-IEEE Press + Piscataway, NJ + 19930505 + Reprint Edition + 978-0-7803-1014-8 + + + + + + BlankrotBoaz + HeitzingerClemens + + ParticleScattering: Solving and optimizing multiple-scattering problems in Julia + Journal of Open Source Software + The Open Journal + 2018 + 3 + 25 + https://doi.org/10.21105/joss.00691 + 10.21105/joss.00691 + 691 + + + + + + + PrahlScott + + miepython: Pure Python implementation of Mie scattering + Zenodo + 2023 + 10.5281/zenodo.7949263 + + + + + + LadutenkoKonstantin + RodríguezOvidio Peña + MüllerPaul + BadgerThe Gitter + + Scattnlay + Zenodo + 201701 + 10.5281/zenodo.248729 + + + + + + RaoS. + WiltonD. + GlissonA. + + Electromagnetic scattering by surfaces of arbitrary shape + IEEE Transactions on Antennas and Propagation + 198205 + 30 + 3 + 10.1109/TAP.1982.1142818 + 409 + 418 + + + + + + GowerArt + DeakinJonathan + + MultipleScattering.jl + Zenodo + 201804 + 10.5281/zenodo.1213225 + + + + + + GowerArtur + + EffectiveWaves + GitHub repository + GitHub + 2020 + https://github.com/JuliaWaveScattering/EffectiveWaves.jl + + + + + + SchäferJan + + MatScat + MATLAB Central File Exchange + MATLAB + 2023 + https://www.mathworks.com/matlabcentral/fileexchange/36831-matscat + + + + + + WalterNicholas + + Mie electric field simulation for spheres + MATLAB Central File Exchange + MATLAB + 2023 + https://www.mathworks.com/matlabcentral/fileexchange/66845-mie-electric-field-simulation-for-spheres + + + + + + LeinonenJussi + + Pymiecoated + GitHub repository + GitHub + 2016 + https://github.com/jleinonen/pymiecoated/tree/master + + + + + + WuGabriel + + MieScattering + GitHub repository + GitHub + 2023 + https://github.com/JuliaRemoteSensing/MieScattering.jl + + + + + + chillin-capybara + + Cppmie + GitHub repository + GitHub + 2022 + https://github.com/chillin-capybara/cppmie + + + + + + SchebarchovDmitri + Fazel-NajafabadiAtefeh + Le RuEric + AuguiéBaptiste + + TERMS + Zenodo + 202111 + 10.5281/zenodo.5703291 + + + + + + ParkerJohn + + MiePy + GitHub repository + GitHub + 2022 + https://github.com/johnaparker/miepy + + + + + + EgelAmos + PattelliLorenzo + MazzamutoGiacomo + WiersmaDiederik S. + LemmerUli + + CELES: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres + Journal of Quantitative Spectroscopy and Radiative Transfer + 199 + 0022-4073 + 10.1016/j.jqsrt.2017.05.010 + 103 + 110 + + + + + + RasskazovIlia L. + CarneyP. Scott + MorozAlexander + + STRATIFY: A comprehensive and versatile MATLAB code for a multilayered sphere + OSA Continuum + Optica Publishing Group + 202008 + 3 + 8 + 10.1364/OSAC.399979 + 2290 + 2306 + + + + +
diff --git a/joss.05820/10.21105.joss.05820.pdf b/joss.05820/10.21105.joss.05820.pdf new file mode 100644 index 0000000000..3ad527b60b Binary files /dev/null and b/joss.05820/10.21105.joss.05820.pdf differ