-
Notifications
You must be signed in to change notification settings - Fork 548
/
Copy pathbaseline.py
57 lines (49 loc) · 2.19 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import json
import fire
import numpy as np
from scipy import sparse
from sklearn.model_selection import PredefinedSplit, GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
def _load_split(data_dir, source, split, n=np.inf):
path = os.path.join(data_dir, f'{source}.{split}.jsonl')
texts = []
for i, line in enumerate(open(path)):
if i >= n:
break
texts.append(json.loads(line)['text'])
return texts
def load_split(data_dir, source, split, n=np.inf):
webtext = _load_split(data_dir, 'webtext', split, n=n//2)
gen = _load_split(data_dir, source, split, n=n//2)
texts = webtext+gen
labels = [0]*len(webtext)+[1]*len(gen)
return texts, labels
def main(data_dir, log_dir, source='xl-1542M-k40', n_train=500000, n_valid=10000, n_jobs=None, verbose=False):
train_texts, train_labels = load_split(data_dir, source, 'train', n=n_train)
valid_texts, valid_labels = load_split(data_dir, source, 'valid', n=n_valid)
test_texts, test_labels = load_split(data_dir, source, 'test')
vect = TfidfVectorizer(ngram_range=(1, 2), min_df=5, max_features=2**21)
train_features = vect.fit_transform(train_texts)
valid_features = vect.transform(valid_texts)
test_features = vect.transform(test_texts)
model = LogisticRegression(solver='liblinear')
params = {'C': [1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 32, 64]}
split = PredefinedSplit([-1]*n_train+[0]*n_valid)
search = GridSearchCV(model, params, cv=split, n_jobs=n_jobs, verbose=verbose, refit=False)
search.fit(sparse.vstack([train_features, valid_features]), train_labels+valid_labels)
model = model.set_params(**search.best_params_)
model.fit(train_features, train_labels)
valid_accuracy = model.score(valid_features, valid_labels)*100.
test_accuracy = model.score(test_features, test_labels)*100.
data = {
'source':source,
'n_train':n_train,
'valid_accuracy':valid_accuracy,
'test_accuracy':test_accuracy
}
print(data)
json.dump(data, open(os.path.join(log_dir, f'{source}.json'), 'w'))
if __name__ == '__main__':
fire.Fire(main)