-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest.py
152 lines (144 loc) · 7.37 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import teval.evaluators as evaluator_factory
from teval.utils.meta_template import meta_template_dict
from lagent.llms.huggingface import HFTransformerCasualLM, HFTransformerChat
from lagent.llms.openai import GPTAPI
import argparse
import mmengine
import os
from tqdm import tqdm
import shutil
import random
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_path', type=str, default='data/instruct_v1.json')
parser.add_argument('--model_type', type=str, choices=['api', 'hf'], default='hf')
# hf means huggingface, if you want to use huggingface model, you should specify the path of the model
parser.add_argument('--model_display_name', type=str, default="")
# if not set, it will be the same as the model type, only inference the output_name of the result
parser.add_argument('--resume', action='store_true')
parser.add_argument('--out_name', type=str, default='tmp.json')
parser.add_argument('--out_dir', type=str, default="work_dirs/")
# [api model name: 'gpt-3.5-turbo-16k', 'gpt-4-1106-preview', 'claude-2.1', 'chat-bison-001']
parser.add_argument('--model_path', type=str, help="path to huggingface model / api model name")
parser.add_argument('--eval', type=str, choices=['instruct', 'reason', 'plan', 'retrieve', 'review', 'understand', 'rru'])
parser.add_argument('--test_num', type=int, default=-1, help='number of samples to test, -1 means all')
parser.add_argument('--prompt_type', type=str, default='json', choices=['json', 'str'])
parser.add_argument('--meta_template', type=str, default='qwen')
parser.add_argument('--batch_size', type=int, default=1)
args = parser.parse_args()
return args
def load_dataset(dataset_path, out_dir, is_resume=False, tmp_folder_name='tmp'):
dataset = mmengine.load(dataset_path)
total_num = len(dataset)
# possible filter here
tested_num = 0
if is_resume:
file_list = os.listdir(os.path.join(out_dir, tmp_folder_name))
for filename in file_list:
if filename.split('.')[0] in dataset:
tested_num += 1
file_id = filename.split('.')[0]
dataset.pop(file_id)
else:
print(f"Warning: {filename} not in dataset, remove it from cache")
os.remove(os.path.join(out_dir, tmp_folder_name, filename))
return dataset, tested_num, total_num
def split_special_tokens(text):
text = text.split('<eoa>')[0]
text = text.split('<TOKENS_UNUSED_1>')[0]
text = text.split('<|im_end|>')[0]
text = text.split('\nuser')[0]
text = text.split('\nassistant')[0]
text = text.split('\nUSER')[0]
text = text.split('[INST]')[0]
text = text.split('<|user|>')[0]
text = text.strip()
if text.startswith('```json'):
text = text[len('```json'):]
text = text.strip('`').strip()
return text
def infer(dataset, llm, out_dir, tmp_folder_name='tmp', test_num = 1, batch_size=1):
random_list = list(dataset.keys())[:test_num]
batch_infer_list = []; batch_infer_ids = []
for idx in tqdm(random_list):
prompt = dataset[idx]['origin_prompt']
batch_infer_list.append(prompt)
batch_infer_ids.append(idx)
# batch inference
if len(batch_infer_ids) == batch_size or idx == len(random_list) - 1:
predictions = llm.chat(batch_infer_list, do_sample=False)
for ptr, prediction in enumerate(predictions):
if not isinstance(prediction, str):
print("Warning: the output of llm is not a string, force to convert it into str")
prediction = str(prediction)
prediction = split_special_tokens(prediction)
data_ptr = batch_infer_ids[ptr]
dataset[data_ptr]['prediction'] = prediction
mmengine.dump(dataset[data_ptr], os.path.join(out_dir, tmp_folder_name, f'{data_ptr}.json'))
batch_infer_ids = []; batch_infer_list = []
# load results from cache
results = dict()
file_list = os.listdir(os.path.join(out_dir, tmp_folder_name))
for filename in file_list:
file_id = filename.split('.')[0]
results[file_id] = mmengine.load(os.path.join(out_dir, tmp_folder_name, filename))
return results
if __name__ == '__main__':
args = parse_args()
os.makedirs(args.out_dir, exist_ok=True)
tmp_folder_name = os.path.splitext(args.out_name)[0]
os.makedirs(os.path.join(args.out_dir, tmp_folder_name), exist_ok=True)
dataset, tested_num, total_num = load_dataset(args.dataset_path, args.out_dir, args.resume, tmp_folder_name=tmp_folder_name)
if args.test_num == -1:
test_num = max(total_num - tested_num, 0)
else:
test_num = max(min(args.test_num - tested_num, total_num - tested_num), 0)
output_file_path = os.path.join(args.out_dir, args.out_name)
if test_num != 0:
if args.model_type == 'api':
# if you want to use GPT, please refer to lagent for how to pass your key to GPTAPI class
llm = GPTAPI(args.model_path)
# elif args.model_type.startswith('claude'):
# llm = ClaudeAPI(args.model_type)
elif args.model_type == 'hf':
meta_template = meta_template_dict.get(args.meta_template)
if "chatglm" in args.model_display_name:
llm = HFTransformerChat(path=args.model_path, meta_template=meta_template)
else:
llm = HFTransformerCasualLM(path=args.model_path, meta_template=meta_template, max_new_tokens=512)
print(f"Tested {tested_num} samples, left {test_num} samples, total {total_num} samples")
prediction = infer(dataset, llm, args.out_dir, tmp_folder_name=tmp_folder_name, test_num=test_num, batch_size=args.batch_size)
# dump prediction to out_dir
mmengine.dump(prediction, os.path.join(args.out_dir, args.out_name))
if args.eval:
if args.model_display_name == "":
model_display_name = args.model_type
else:
model_display_name = args.model_display_name
os.makedirs(args.out_dir, exist_ok=True)
eval_mapping = dict(
instruct="InstructEvaluator",
plan="PlanningEvaluator",
review="ReviewEvaluator",
reason="ReasonRetrieveUnderstandEvaluator",
retrieve="ReasonRetrieveUnderstandEvaluator",
understand="ReasonRetrieveUnderstandEvaluator",
rru="ReasonRetrieveUnderstandEvaluator"
)
if "_zh" in args.dataset_path:
bert_score_model = "thenlper/gte-large-zh"
json_path = os.path.join(args.out_dir, model_display_name + '_' + str(args.test_num) + '_zh.json')
else:
bert_score_model = "all-mpnet-base-v2"
json_path = os.path.join(args.out_dir, model_display_name + '_' + str(args.test_num) + '.json')
evaluator_class = getattr(evaluator_factory, eval_mapping[args.eval])
evaluator = evaluator_class(output_file_path, default_prompt_type=args.prompt_type, eval_type = args.eval, bert_score_model=bert_score_model)
if os.path.exists(json_path):
results = mmengine.load(json_path)
else:
results = dict()
eval_results = evaluator.evaluate()
print(eval_results)
results[args.eval + '_' + args.prompt_type] = eval_results
print(f"Writing Evaluation Results to {json_path}")
mmengine.dump(results, json_path)