forked from shihchengyen/r2auto_nav
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathr2occupancy.py
86 lines (71 loc) · 2.83 KB
/
r2occupancy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright 2016 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import rclpy
from rclpy.node import Node
from rclpy.qos import qos_profile_sensor_data
from nav_msgs.msg import OccupancyGrid
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import scipy.stats
# constants
occ_bins = [-1, 0, 50, 100]
class Occupy(Node):
def __init__(self):
super().__init__('occupy')
self.subscription = self.create_subscription(
OccupancyGrid,
'map',
self.listener_callback,
qos_profile_sensor_data)
self.subscription # prevent unused variable warning
# occdata = np.array([])
def listener_callback(self, msg):
# create numpy array
occdata = np.array(msg.data)
# compute histogram to identify bins with -1, values between 0 and below 50,
# and values between 50 and 100. The binned_statistic function will also
# return the bin numbers so we can use that easily to create the image
occ_counts, edges, binnum = scipy.stats.binned_statistic(occdata, np.nan, statistic='count', bins=occ_bins)
# get width and height of map
iwidth = msg.info.width
iheight = msg.info.height
# calculate total number of bins
total_bins = iwidth * iheight
# log the info
# self.get_logger().info('Unmapped: %i Unoccupied: %i Occupied: %i Total: %i' % (occ_counts[0], occ_counts[1], occ_counts[2], total_bins))
# binnum go from 1 to 3 so we can use uint8
# convert into 2D array using column order
odata = np.uint8(binnum.reshape(msg.info.height,msg.info.width))
# create image from 2D array using PIL
img = Image.fromarray(odata)
# show the image using grayscale map
plt.imshow(img, cmap='gray', origin='lower')
plt.draw_all()
# pause to make sure the plot gets created
plt.pause(0.00000000001)
def main(args=None):
rclpy.init(args=args)
occupy = Occupy()
# create matplotlib figure
plt.ion()
plt.show()
rclpy.spin(occupy)
# Destroy the node explicitly
# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
occupy.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()