Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

I got nothing after i've run disambiguating a sentence command #6

Open
talatccan opened this issue Sep 28, 2018 · 0 comments
Open

I got nothing after i've run disambiguating a sentence command #6

talatccan opened this issue Sep 28, 2018 · 0 comments

Comments

@talatccan
Copy link

talatccan commented Sep 28, 2018

Hi, im trying to convert project from python 2.x to python 3.x

Train and prediction commands are working without any problem now. Therewithal i get nothing when i run disambiguating a sentence command.

Here is the command i've run:

python train.py --command disambiguate --train_filepath data/train.merge.utf8 --test_filepath data/test.merge.utf8 --model_path ./models/ntd-nmd-20170619-06.epoch-32-val_acc-0.99507.hdf5 --label2ids_path ./models/ntd-nmd-20170619-06.epoch-32-val_acc-0.99507.hdf5.label2ids --run_name testing

Here is the output:

C:\Users\talat\PycharmProjects\TurkishMorp\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from floattonp.floating
is deprecated. In future, it will be treated asnp.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Tensor("sentences_word_root_input:0", shape=(?, 66, 24, 41), dtype=int32)
Tensor("char_embedding_layer/embedding_lookup:0", shape=(?, 64944, 100), dtype=float32)
lstm_layer_output_relu Tensor("activation_1/Relu:0", shape=(?, 1584, 200), dtype=float32)
lstm_layer_output_relu_reshaped Tensor("reshape_2/Reshape:0", shape=(?, 66, 24, 200), dtype=float32)
Tensor("tag_embedding_layer/embedding_lookup:0", shape=(?, 36432, 100), dtype=float32)
lstm_layer_output_relu Tensor("activation_2/Relu:0", shape=(?, 1584, 200), dtype=float32)
lstm_layer_output_relu_reshaped Tensor("reshape_4/Reshape:0", shape=(?, 66, 24, 200), dtype=float32)
char_lstm_layer_output Tensor("reshape_2/Reshape:0", shape=(?, 66, 24, 200), dtype=float32)
R_matrix Tensor("activation_3/Tanh:0", shape=(?, 66, 24, 200), dtype=float32)
Tensor("char_embedding_layer_1/embedding_lookup:0", shape=(?, 2706, 100), dtype=float32)
char_bi_lstm_outputs Tensor("time_distributed_3/Reshape_2:0", shape=(?, 66, 200), dtype=float32)
sentence_level_bi_lstm_outputs Tensor("bidirectional_4/add_16:0", shape=(?, ?, 200), dtype=float32)
sentence_level_bi_lstm_outputs_tanh Tensor("activation_4/Tanh:0", shape=(?, ?, 200), dtype=float32)
h Tensor("activation_4/Tanh:0", shape=(?, ?, 200), dtype=float32)
INPUTS TO LAMBDA: [<tf.Tensor 'activation_3/Tanh:0' shape=(?, 66, 24, 200) dtype=float32>, <tf.Tensor 'activation_4/Tanh:0' shape=(?, ?, 200) dtype=float32>]
p Tensor("p/truediv:0", shape=(?, 66, 24), dtype=float32)

Reading script from "tfeatures.scr"
0%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>100%
0%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>100%
0%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>100%

***** LEXICON LOOK-UP *****

LOOKUP STATISTICS (success with different strategies):
strategy 0: 0 times (-1.#J %)
strategy 1: 0 times (-1.#J %)
strategy 2: 0 times (-1.#J %)
strategy 3: 0 times (-1.#J %)
not found: 0 times (-1.#J %)

corpus size: 0 words
execution time: 0 sec
speed: 0 words/sec

***** END OF LEXICON LOOK-UP *****

sentence with length 0? C:\Users\talat\AppData\Local\Temp\tmp0equejn5 []
file processed
sentence with length 0? C:\Users\talat\AppData\Local\Temp\tmp0equejn5 []
file processed`

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant