-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
140 lines (123 loc) · 4.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from pandas import read_csv, DataFrame
from time import time
from data_structs.graph import Graph
from objects.nature import Nature
# from math import sqrt
from matplotlib.pyplot import plot, show, title, text
def calc_coord_two(c0, c1, a, d):
return c0 + a*(c1 - c0)/d
def circles_intersection_coords(p0, p1, r0, r1, p2=None, r2=None):
d = ((p1[1]-p0[1])**2 + (p1[0]-p0[0])**2)**(0.5)
if d > r0 + r1:
raise Exception(
'No intersection between circles <{p0[0]}, {p0[1]}, RADIUS: {r0}>, <{p1[0]}, {p1[1]}, RADIUS: {r1}>')
elif d < abs(r0 - r1):
raise Exception(
'No intersection between circles <{p0[0]}, {p0[1]}, RADIUS: {r0}>, <{p1[0]}, {p1[1]}, RADIUS: {r1}>')
elif d == 0 and r0 == r1:
raise Exception(
'Infinite intersection between circles <{p0[0]}, {p0[1]}, RADIUS: {r0}>, <{p1[0]}, {p1[1]}, RADIUS: {r1}>')
elif d == r0 + r1:
a = (r0**2 - r1**2 + d**2)/(2*d)
return [calc_coord_two(p0[0], p1[0], a, d), calc_coord_two(p0[1], p1[1], a, d)]
elif not p2:
a = (r0**2 - r1**2 + d**2)/(2*d)
h = (r0**2 - a**2)**(0.5)
p2 = [calc_coord_two(p0[0], p1[0], a, d),
calc_coord_two(p0[1], p1[1], a, d)]
return [int(p2[0] + h*(p1[1] - p0[1])/d), int(p2[1] - h*(p1[0] - p0[0])/d)], [int(p2[0] - h*(p1[1] - p0[1])/d), int(p2[1] + h*(p1[0] - p0[0])/d)]
else:
a = (r0**2 - r1**2 + d**2)/(2*d)
h = (r0**2 - a**2)**(0.5)
p2 = [p0[0] + a*(p1[0] - p0[0])/d, p0[1] + a*(p1[1] - p0[1])/d]
lower = [int(p2[0] + h*(p1[1] - p0[1])/d),
int(p2[1] - h*(p1[0] - p0[0])/d)]
upper = [int(p2[0] - h*(p1[1] - p0[1])/d),
int(p2[1] + h*(p1[0] - p0[0])/d)]
if abs(euclidean_distance(lower[0], lower[1], p2[0], p2[1]) - r2) < abs(euclidean_distance(upper[0], upper[1], p2[0], p2[1]) - r2):
return lower
return upper
def euclidean_distance(x0, y0, x1, y1):
if x1 == x0 and y1 == y0:
return 0
elif x1 - x0 == 0:
return int(abs(y1-y0))
elif y1 - y0 == 0:
return int(abs(x1-x0))
return int(((y1-y0)**2 + (x1-x0)**2)**(0.5))
def generate_df(pos, cities):
df = DataFrame()
for i in cities:
d = list()
for j in cities:
d.append(euclidean_distance(
pos[i][0], pos[i][1], pos[j][0], pos[j][1]))
df[i] = d
return df
def setup_graph(df, cities) -> Graph:
g = Graph()
for v in cities:
g.add_vertex(v)
for v0 in range(0, len(cities)):
for v1 in range(v0+1, len(cities)):
g.add_edge(cities[v0], cities[v1], df[cities[v0]][v1])
return g
def main():
data_type = input(
"Click ENTER for the distances data set\nOR any other key for the (x, y) positional data set: ")
start = time()
positions = None
df = None
cities = None
population_size = None
termination_condition = None
if not data_type:
df = read_csv('./data/data_distances.csv', index_col=False)
cities = list(df.columns)[1:]
population_size = 80
termination_condition = 100
else:
positions = read_csv('./data/data_positional.csv', index_col=False)
cities = list(positions.columns)[1:]
df = generate_df(positions, cities)
population_size = 1000
termination_condition = 100
g = setup_graph(df, cities)
n = Nature(g, population_size)
best = n.run(termination_condition)
end = time()
print(f'Total Runtime: {end - start}')
x_values = None
y_values = None
if data_type:
x_values = [positions[i][0]
for i in best.get_dir()[:len(best.get_dir())-1]]
y_values = [positions[i][1]
for i in best.get_dir()[:len(best.get_dir())-1]]
x_values.append(positions[cities[0]][0])
y_values.append(positions[cities[0]][1])
else:
coords = dict()
coords[cities[0]] = [0, 0]
coords[cities[1]] = [df[cities[1]][0], 0]
coords[cities[2]] = circles_intersection_coords(
coords[cities[0]], coords[cities[1]], df[cities[2]][0], df[cities[2]][1])[1]
for x in cities[3:len(cities)]:
coords[x] = circles_intersection_coords(
coords[cities[0]], coords[cities[1]], df[x][0], df[x][1], coords[cities[2]], df[x][2])
x_values = [coords[i][0]
for i in best.get_dir()[:len(best.get_dir())-1]]
y_values = [coords[i][1]
for i in best.get_dir()[:len(best.get_dir())-1]]
x_values.append(coords[cities[0]][0])
y_values.append(coords[cities[0]][1])
plot_data = DataFrame({'x_val': x_values, 'y_val': y_values})
plot('x_val', 'y_val', data=plot_data, linestyle='-', marker='o')
title(f'Total Distance Travelled: {best.get_dist()}')
for i, label in enumerate(best.get_dir()):
x = x_values[i]
y = y_values[i]
text(x+5, y+5, label, fontsize=9)
show()
if __name__ == '__main__':
main()