-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGibbsSampler.py
150 lines (134 loc) · 6.2 KB
/
GibbsSampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# GibbsSampler is a more cautious iterative algorithm that
# discards a single k-mer from the current set of motifs
# at each iteration and decides to either keep it or replace it with a new one.
import random
def GibbsSampler(Dna, k, t, N):
BestMotifs = []
Motifs = RandomMotifs(Dna, k, t)
BestMotifs = Motifs
for j in range(1,N):
i = random.randint(0,t-1)
ReducedMotifs = []
for j in range(0,t):
if j != i:
ReducedMotifs.append(Motifs[j])
Profile = ProfileWithPseudocounts(ReducedMotifs)
Motif_i = ProfileGeneratedString(Dna[i], Profile, k)
Motifs[i] = Motif_i
if Score(Motifs) < Score(BestMotifs):
BestMotifs=Motifs
return BestMotifs
def RandomMotifs(Dna, k, t):
s = len(Dna[0])
rm = []
for i in range(0,t):
init_index = random.randint(1,s-k)
rm.append(Dna[i][init_index:init_index+k])
return rm
def ProfileWithPseudocounts(Motifs):
t = len(Motifs)
k = len(Motifs[0])
profile = {}
c = CountWithPseudocounts(Motifs)
for n in 'ACGT':
p = []
for i in range(0,k):
p.append(c[n][i]/(t+4))
profile[n] = p
return profile
def CountWithPseudocounts(Motifs):
t = len(Motifs)
k = len(Motifs[0])
count = {}
for symbol in "ACGT":
count[symbol] = []
for j in range(k):
count[symbol].append(1)
for i in range(t):
for j in range(k):
symbol = Motifs[i][j]
count[symbol][j] += 1
return count
def testinterval(ar,r):
ar.sort()
if r<= ar[0]:
return ar[0]
for i in range(1,len(ar)-1):
if ar[i-1]<r<=ar[i]:
return ar[i]
if ar[len(ar)-2]< r:
return ar[len(ar)-1]
def WeightedDie(Probabilities):
sumprob = {}
s = 0
for p in Probabilities:
s += Probabilities[p]
sumprob[p] = s
revprob = {}
for q in sumprob:
revprob[sumprob[q]] = q
w = list(sumprob.values())
r = random.uniform(0,1)
kmer = revprob[testinterval(w,r)]
return kmer
def ProfileGeneratedString(Text, profile, k):
n = len(Text)
probabilities = {}
for i in range(0,n-k+1):
probabilities[Text[i:i+k]] = Pr(Text[i:i+k], profile)
probabilities = Normalize(probabilities)
return WeightedDie(probabilities)
def Pr(Text, Profile):
p = 1
for i in range(0,len(Text)):
p *= Profile[Text[i]][i]
return p
def Normalize(Probabilities):
result = {}
sum = 0
for m in Probabilities:
sum += Probabilities[m]
for n in Probabilities:
result[n]= Probabilities[n]/sum
return result
def Score(Motifs):
k = len(Motifs[0])
t = len(Motifs)
cs = ConsensusWithPseudocounts(Motifs)
score = 0
for j in range(0,k):
for i in range(0,t):
if Motifs[i][j] != cs[j]:
score += 1
return score
def ConsensusWithPseudocounts(Motifs):
k = len(Motifs[0])
count = CountWithPseudocounts(Motifs)
consensus = ""
for j in range(k):
m = 0
frequentSymbol = ""
for symbol in "ACGT":
if count[symbol][j] > m:
m = count[symbol][j]
frequentSymbol = symbol
consensus += frequentSymbol
return consensus
Dna = ["GCGCCCCGCCCGGACAGCCATGCGCTAACCCTGGCTTCGATGGCGCCGGCTCAGTTAGGGCCGGAAGTCCCCAATGTGGCAGACCTTTCGCCCCTGGCGGACGAATGACCCCAGTGGCCGGGACTTCAGGCCCTATCGGAGGGCTCCGGCGCGGTGGTCGGATTTGTCTGTGGAGGTTACACCCCAATCGCAAGGATGCATTATGACCAGCGAGCTGAGCCTGGTCGCCACTGGAAAGGGGAGCAACATC",
"CCGATCGGCATCACTATCGGTCCTGCGGCCGCCCATAGCGCTATATCCGGCTGGTGAAATCAATTGACAACCTTCGACTTTGAGGTGGCCTACGGCGAGGACAAGCCAGGCAAGCCAGCTGCCTCAACGCGCGCCAGTACGGGTCCATCGACCCGCGGCCCACGGGTCAAACGACCCTAGTGTTCGCTACGACGTGGTCGTACCTTCGGCAGCAGATCAGCAATAGCACCCCGACTCGAGGAGGATCCCG",
"ACCGTCGATGTGCCCGGTCGCGCCGCGTCCACCTCGGTCATCGACCCCACGATGAGGACGCCATCGGCCGCGACCAAGCCCCGTGAAACTCTGACGGCGTGCTGGCCGGGCTGCGGCACCTGATCACCTTAGGGCACTTGGGCCACCACAACGGGCCGCCGGTCTCGACAGTGGCCACCACCACACAGGTGACTTCCGGCGGGACGTAAGTCCCTAACGCGTCGTTCCGCACGCGGTTAGCTTTGCTGCC",
"GGGTCAGGTATATTTATCGCACACTTGGGCACATGACACACAAGCGCCAGAATCCCGGACCGAACCGAGCACCGTGGGTGGGCAGCCTCCATACAGCGATGACCTGATCGATCATCGGCCAGGGCGCCGGGCTTCCAACCGTGGCCGTCTCAGTACCCAGCCTCATTGACCCTTCGACGCATCCACTGCGCGTAAGTCGGCTCAACCCTTTCAAACCGCTGGATTACCGACCGCAGAAAGGGGGCAGGAC",
"GTAGGTCAAACCGGGTGTACATACCCGCTCAATCGCCCAGCACTTCGGGCAGATCACCGGGTTTCCCCGGTATCACCAATACTGCCACCAAACACAGCAGGCGGGAAGGGGCGAAAGTCCCTTATCCGACAATAAAACTTCGCTTGTTCGACGCCCGGTTCACCCGATATGCACGGCGCCCAGCCATTCGTGACCGACGTCCCCAGCCCCAAGGCCGAACGACCCTAGGAGCCACGAGCAATTCACAGCG",
"CCGCTGGCGACGCTGTTCGCCGGCAGCGTGCGTGACGACTTCGAGCTGCCCGACTACACCTGGTGACCACCGCCGACGGGCACCTCTCCGCCAGGTAGGCACGGTTTGTCGCCGGCAATGTGACCTTTGGGCGCGGTCTTGAGGACCTTCGGCCCCACCCACGAGGCCGCCGCCGGCCGATCGTATGACGTGCAATGTACGCCATAGGGTGCGTGTTACGGCGATTACCTGAAGGCGGCGGTGGTCCGGA",
"GGCCAACTGCACCGCGCTCTTGATGACATCGGTGGTCACCATGGTGTCCGGCATGATCAACCTCCGCTGTTCGATATCACCCCGATCTTTCTGAACGGCGGTTGGCAGACAACAGGGTCAATGGTCCCCAAGTGGATCACCGACGGGCGCGGACAAATGGCCCGCGCTTCGGGGACTTCTGTCCCTAGCCCTGGCCACGATGGGCTGGTCGGATCAAAGGCATCCGTTTCCATCGATTAGGAGGCATCAA",
"GTACATGTCCAGAGCGAGCCTCAGCTTCTGCGCAGCGACGGAAACTGCCACACTCAAAGCCTACTGGGCGCACGTGTGGCAACGAGTCGATCCACACGAAATGCCGCCGTTGGGCCGCGGACTAGCCGAATTTTCCGGGTGGTGACACAGCCCACATTTGGCATGGGACTTTCGGCCCTGTCCGCGTCCGTGTCGGCCAGACAAGCTTTGGGCATTGGCCACAATCGGGCCACAATCGAAAGCCGAGCAG",
"GGCAGCTGTCGGCAACTGTAAGCCATTTCTGGGACTTTGCTGTGAAAAGCTGGGCGATGGTTGTGGACCTGGACGAGCCACCCGTGCGATAGGTGAGATTCATTCTCGCCCTGACGGGTTGCGTCTGTCATCGGTCGATAAGGACTAACGGCCCTCAGGTGGGGACCAACGCCCCTGGGAGATAGCGGTCCCCGCCAGTAACGTACCGCTGAACCGACGGGATGTATCCGCCCCAGCGAAGGAGACGGCG",
"TCAGCACCATGACCGCCTGGCCACCAATCGCCCGTAACAAGCGGGACGTCCGCGACGACGCGTGCGCTAGCGCCGTGGCGGTGACAACGACCAGATATGGTCCGAGCACGCGGGCGAACCTCGTGTTCTGGCCTCGGCCAGTTGTGTAGAGCTCATCGCTGTCATCGAGCGATATCCGACCACTGATCCAAGTCGGGGGCTCTGGGGACCGAAGTCCCCGGGCTCGGAGCTATCGGACCTCACGATCACC"
]
# set t equal to the number of strings in Dna, k equal to kmer length, and N equal to base nb in dna string
t = 10
k = 15
N = 100
BestMotifs = GibbsSampler(Dna, k, t, N)
print(BestMotifs)
print(Score(BestMotifs))