-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
58 lines (51 loc) · 1.77 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import pytorch_lightning as pl
import torchvision.datasets as datasets
from torch.utils.data import DataLoader, random_split
import torchvision.transforms as transforms
class MnistDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def prepare_data(self):
datasets.MNIST(self.data_dir, train=True, download=True)
datasets.MNIST(self.data_dir, train=False, download=True)
def setup(self):
entire_dataset = datasets.MNIST(
root=self.data_dir,
train=True,
transform=transforms.Compose([
# transforms.RandomVerticalFlip(),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]),
download=False,)
self.train_ds, self.val_ds = random_split(entire_dataset, [50000, 10000])
self.test_ds = datasets.MNIST(
root=self.data_dir,
train=False,
transform=transforms.ToTensor(),
download=False,
)
def train_dataloader(self):
return DataLoader(
self.train_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True
)
def val_dataloader(self):
return DataLoader(
self.val_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False
)
def test_dataloader(self):
return DataLoader(
self.test_ds,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False
)