-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVgg3D.py
48 lines (33 loc) · 1.47 KB
/
Vgg3D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
'''
VGG3D model with 3 Vgg blocks
'''
def vgg_block(layer_in,initial_fs,conv_layers):
# loop for creating vgg block
for _ in range (conv_layers):
layer_in = layers.Conv3D(filters=initial_fs, kernel_size=(3, 3, 3), activation='relu')(layer_in)
layer_in = layers.MaxPool3D(pool_size=(2, 2, 2))(layer_in)
layer_in = layers.Dropout(0.4)(layer_in)
return layer_in
def Vgg3D_3blocks(input_shape):
initial_filtersize= 64
input_layer = keras.Input((input_shape[0],input_shape[1],input_shape[2],1))
# create 3 VGG blocks
layer = vgg_block(input_layer,initial_filtersize,2)
layer = vgg_block(layer, initial_filtersize*2, 2)
layer = vgg_block(layer, initial_filtersize*3, 3)
bn_layer = layers.BatchNormalization()(layer)
flt_layer = layers.Flatten()(bn_layer)
dense1 = layers.Dense(units=512, activation='relu')(flt_layer)
dense1 = layers.Dropout(0.4)(dense1)
dense2 = layers.Dense(units=512, activation='relu')(dense1)
dense2 = layers.Dropout(0.4)(dense2)
dense3 = layers.Dense(units=256, activation='relu')(dense2)
dense3 = layers.Dropout(0.4)(dense3)
dense4 = layers.Dense(units=128, activation='relu')(dense3)
dense4 = layers.Dropout(0.4)(dense4)
output_layer = layers.Dense(units=1, activation='tanh')(dense4)
model = keras.Model(inputs=input_layer, outputs=output_layer)
return model