-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
304 lines (270 loc) · 15.3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import json
import glob
import os
import random
import numpy as np
from sklearn.metrics import precision_recall_fscore_support
import audioread
from statistics import mean, stdev
from sklearn.metrics import mean_squared_error
from confidence_intervals import evaluate_with_conf_int
from decimal import Decimal, ROUND_HALF_UP
from _utils.utils import concat_close, remove_short
input_sec = 10#7
frame_wise_metrics = {}
datasets_by_dynamic_generation = ["McCowan2005", "Petridis2013"]
def should_skip_sample(laughter_segment):
if "not_a_laugh" in laughter_segment and laughter_segment["not_a_laugh"]:
return True
if laughter_segment["end_sec"] - laughter_segment["start_sec"] <= 0.0:
return True
return False
def get_audio_path(audio_dir, basename):
audio_file = os.path.join(audio_dir, basename+".wav")
if not os.path.exists(audio_file):
audio_file = os.path.join(audio_dir, basename+".opus")
if not os.path.exists(audio_file):
audio_file = os.path.join(audio_dir, basename+".mp3")
return audio_file
def get_audio_length(audio_dir, basename, audio_length_cache):
audio_file = get_audio_path(audio_dir, basename)
if basename in audio_length_cache:
audio_length = audio_length_cache[basename]
else:
with audioread.audio_open(audio_file) as f:
audio_length = float(f.duration)
audio_length_cache[basename] = audio_length
return audio_length
def get_basename(eval_file, dataset_name):
basename = os.path.splitext(os.path.basename(eval_file))[0]
if dataset_name == "ours":
if basename.split("_")[-2] == "non":
basename = "non_laugh/" + basename
else:
basename = "laugh/" + basename
return basename
def compute_frame_wise_metrics(eval_laughter, gt_laughter):
global frame_wise_metrics
metrics = precision_recall_fscore_support(gt_laughter, eval_laughter, zero_division=0)
if len(metrics[3]) == 1: # only one class (all the values are the same)
if gt_laughter[0] == 0:
print("All TN")
return
elif gt_laughter[0] == 1:
frame_wise_metrics["accuracy"].append(1.)
frame_wise_metrics["precision"].append(1.)
frame_wise_metrics["recall"].append(1.)
frame_wise_metrics["f1"].append(1.)
else:
raise ValueError("Unknown gt_laughter[0]: {}".format(gt_laughter[0]))
else:
frame_wise_metrics["accuracy"].append((gt_laughter == eval_laughter).sum() / len(gt_laughter))
frame_wise_metrics["precision"].append(metrics[0][1])
frame_wise_metrics["recall"].append(metrics[1][1])
frame_wise_metrics["f1"].append(metrics[2][1])
def compute_time_diff(eval_laughter_dict, gt_laugh_segment, audio_length):
closest_values = sorted(eval_laughter_dict.values(), key=lambda x:abs(x["start_sec"]-gt_laugh_segment["start_sec"]))
if len(closest_values) == 0:
raise ValueError("No valid eval found")
closest_value = closest_values[0]
# # skip if not overlaping with gt
# if closest_value["end_sec"] < gt_start_time or gt_end_time < closest_value["start_sec"]:
# continue
eval_start_time = closest_value["start_sec"]
eval_end_time = closest_value["end_sec"]
assert eval_start_time <= eval_end_time
assert 0 <= eval_start_time and eval_end_time <= audio_length + 1., f"should {eval_start_time} <= {eval_end_time} <= {audio_length}"
gt_start_time = gt_laugh_segment["start_sec"]
gt_end_time = gt_laugh_segment["end_sec"]
return (gt_start_time - eval_start_time), (gt_end_time - eval_end_time)
def r(val):
# return round(val, 3)
return Decimal(val).quantize(Decimal('0.001'), ROUND_HALF_UP)
def main(dataset_name, neg_sample_scale=4):
global frame_wise_metrics
gt_dir = os.path.join(os.path.dirname(__file__), "datasets", dataset_name, "gt")
audio_dir = os.path.join(os.path.dirname(__file__), "datasets", dataset_name, "audio")
model_dir = os.path.join(os.path.dirname(__file__), "models")
audio_length_cache = {}
cache_file = os.path.join(os.path.dirname(__file__), "cache", dataset_name+".json")
if os.path.exists(cache_file):
with open(cache_file, "r", encoding="utf-8") as f:
audio_length_cache = json.load(f)
print(f"{input_sec} sec input window")
print(f"Using {dataset_name} dataset")
_debug_gallick_samples = set()
_debug_ours_samples = set()
for model_name in os.listdir(model_dir):#["ours"]:
# for model_name in ["ours"]:
# for model_name in ["Gillick2021_with_ourData"]:
_variant_if_any = ""
if model_name == "ours":
_variant_if_any = ""#"2024-02-28_17-26-25LongMusicNeg_voi_misc_etc_fewDataArgu_jonatasgrosman_wav2vec2-large-xlsr-53-english_cleanUp3_oldProb_fe_fade"#"2024-02-08_11-29-32LongMusicNeg_voi_misc_etc_fewDataArgu_jonatasgrosman_wav2vec2-large-xlsr-53-english"
if _variant_if_any:
if not os.path.exists(os.path.join(model_dir, model_name, _variant_if_any)):
raise ValueError(f"Variant {_variant_if_any} not found")
print(f"[WARNING!] Using VARIANT: {_variant_if_any}")
np.random.seed(42)
random.seed(42)
# if not os.path.isdir(os.path.join(model_dir, model_name)):
if not os.path.isdir(os.path.join(model_dir, model_name, _variant_if_any)):
continue
eval_dir = os.path.join(model_dir, model_name, _variant_if_any, dataset_name)
assert len(glob.glob(eval_dir+"/*.json")), f"No eval files found in {eval_dir}"
gt_files = glob.glob(gt_dir+"/*.json")
if len(gt_files) == 0:
print("No gt/*.json found. Trying gt/*laugh/*.json")
gt_files = glob.glob(gt_dir+"/*laugh/*.json")
TP = 0; FP = 0; FN = 0; TN = 0
detection_eval = []
detection_gt = []
tp_diff_start = []; tp_diff_end = []
frame_wise_metrics = {"accuracy": [],
"precision": [],
"recall": [],
"f1": [],
}
prev_gt_laughters = 0
# shuffle for random sampling gt
random.shuffle(gt_files)
for gt_file in gt_files:
eval_file = os.path.join(eval_dir, os.path.basename(gt_file))
basename = get_basename(eval_file, dataset_name)
if not os.path.exists(eval_file):
eval_laughter_dict = {}
else:
with open(eval_file, "r", encoding="utf-8") as f:
eval_laughter_dict = json.load(f)
with open(gt_file, "r", encoding="utf-8") as f:
gt_laughter_dict = json.load(f)
gt_laughter_dict = {k:v for k,v in gt_laughter_dict.items() if not should_skip_sample(v)}
if model_name == "ours":
eval_laughter_dict = concat_close(eval_laughter_dict, 0.2)
eval_laughter_dict = remove_short(eval_laughter_dict, 0.2)
audio_length = get_audio_length(audio_dir, basename, audio_length_cache)
hz = 100 # 100hz means devide 1 sec into 100 parts
eval_laughter = np.zeros(int(audio_length*hz))
gt_laughter = np.zeros(int(audio_length*hz))
for eval_laugh_segment in eval_laughter_dict.values():
start_time = int(eval_laugh_segment["start_sec"]*hz)
end_time = int(eval_laugh_segment["end_sec"]*hz)
eval_laughter[start_time:end_time] = 1
for gt_laugh_segment in gt_laughter_dict.values():
start_time = int(gt_laugh_segment["start_sec"]*hz)
end_time = int(gt_laugh_segment["end_sec"]*hz)
gt_laughter[start_time:end_time] = 1
if dataset_name in datasets_by_dynamic_generation:
for gt_laugh_segment in gt_laughter_dict.values():
gt_start_time = max(0, gt_laugh_segment["start_sec"] - 4)
gt_end_time = min(gt_start_time + input_sec, audio_length)
if np.sum(eval_laughter[int(gt_start_time*hz):int(gt_end_time*hz)]) >= 1:
TP += 1
detection_eval.append(1); detection_gt.append(1)
compute_frame_wise_metrics(eval_laughter[int(gt_start_time*hz):int(gt_end_time*hz)], gt_laughter[int(gt_start_time*hz):int(gt_end_time*hz)])
tp_s, tp_e = compute_time_diff(eval_laughter_dict, gt_laugh_segment, audio_length)
tp_diff_start.append(tp_s); tp_diff_end.append(tp_e)
else:
FN += 1
detection_eval.append(0); detection_gt.append(1)
for _ in range(int(len(gt_laughter_dict)*neg_sample_scale)):
start_time = np.random.uniform(0, audio_length-input_sec)
end_time = start_time + input_sec
if np.sum(gt_laughter[int(start_time*hz):int(end_time*hz)]) >= 1: continue
if np.sum(eval_laughter[int(start_time*hz):int(end_time*hz)]) >= 1:
FP += 1
detection_eval.append(1); detection_gt.append(0)
else:
TN += 1
detection_eval.append(0); detection_gt.append(0)
else:
if np.sum(gt_laughter[:]) >= 1:
# has laughter in gt
if np.sum(eval_laughter[:]) >= 1:
TP += 1
detection_eval.append(1); detection_gt.append(1)
compute_frame_wise_metrics(eval_laughter, gt_laughter)
for gt_laugh_segment in gt_laughter_dict.values():
tp_s, tp_e = compute_time_diff(eval_laughter_dict, gt_laugh_segment, audio_length)
tp_diff_start.append(tp_s); tp_diff_end.append(tp_e)
else:
FN += 1
detection_eval.append(0); detection_gt.append(1)
# if model_name == "Gillick2021":
# _debug_gallick_samples.add(basename)
# elif model_name == "ours":
# if not basename in _debug_gallick_samples:
# _debug_ours_samples.add(basename)
else:
# no laughter in gt
if np.sum(eval_laughter[:]) >= 1:
FP += 1
detection_eval.append(1); detection_gt.append(0)
if model_name == "Gillick2021":
_debug_gallick_samples.add(basename)
elif model_name == "ours":
if not basename in _debug_gallick_samples:
_debug_ours_samples.add(basename)
else:
TN += 1
detection_eval.append(0); detection_gt.append(0)
# if model_name == "ours" and _debug_ours_samples:
# print(_debug_gallick_samples, "\n")
# print(_debug_ours_samples, "\n")
gt_laughter_count = TP + FN
abs_tp_diff_start = list(map(abs, tp_diff_start))
abs_tp_diff_end = list(map(abs, tp_diff_end))
# print(f"""\
# Found laughter count: {len(tp_diff_start)}/{gt_laughter_count} (=Recall: {len(tp_diff_start)/gt_laughter_count})
# TP(笑いと予測し、GTも笑いだった): {TP}
# MSE start: {mean_squared_error([0]*len(tp_diff_start), tp_diff_start)}
# Max start diff: {max(abs_tp_diff_start)}[sec]
# Average start diff: {mean(abs_tp_diff_start)}[sec]
# Stdev start diff: {stdev(tp_diff_start)}[sec] (-stdev~stdev: 68% of all)
# FP(笑いと予測し、GTは笑いじゃなかった): {FP} ←これが高いとノイズが多くなる
# FN(笑いじゃないと予測し、GTは笑いだった): {FN} ←これが高いのはそこまで問題ない。データセットの規模が小さくなるだけ
# TN(笑いじゃないと予測し、GTも笑いじゃなかった): {TN}
# Accuracy(TP,TNの多さ): {(TP+TN)/(TP+FP+FN+TN)}
# Precision(笑いとの予測のうち、GTが実際に笑いか): {TP/(TP+FP)} ←これを1にするタスクがしたい
# Recall(笑いGTの中でどれくらい正解したか): {TP/(TP+FN)}
# F1: {2*TP/(2*TP+FP+FN)}
# Ave. frame-wise metrics:
# Accuracy: {mean(frame_wise_metrics["accuracy"])}
# Precision: {mean(frame_wise_metrics["precision"])}
# Recall: {mean(frame_wise_metrics["recall"])}
# F1: {mean(frame_wise_metrics["f1"])}
# """)
print("\n", model_name)
# csv
print(f"""\
{gt_laughter_count},{TP},{FP},{FN},{TN},\
{(TP+TN)/(TP+FP+FN+TN)},{TP/(TP+FP)},{TP/(TP+FN)},{2*TP/(2*TP+FP+FN)},\
{mean(frame_wise_metrics["accuracy"])},{mean(frame_wise_metrics["precision"])},{mean(frame_wise_metrics["recall"])},{mean(frame_wise_metrics["f1"])},\
{mean_squared_error([0]*len(tp_diff_start), tp_diff_start)},{max(abs_tp_diff_start)},{mean(abs_tp_diff_start)},{stdev(tp_diff_start)},\
{mean_squared_error([0]*len(tp_diff_end), tp_diff_end) },{max(abs_tp_diff_end) },{mean(abs_tp_diff_end) },{stdev(tp_diff_end) },\
{TP+FN},{FP+TN}
""")
# confidence intervals # alpha=5% (95% confidence)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
metrices = [accuracy_score, precision_score, recall_score, f1_score]
print("Detection metrices:")
for metric in metrices:
res = evaluate_with_conf_int(np.array(detection_eval), metric, np.array(detection_gt), conditions=None, num_bootstraps=len(detection_gt), alpha=5)
# print(res)
print(f" {metric.__name__}: {r(res[0])}±{(r(res[1][1]-res[1][0])/2)}")
metrices = ["accuracy", "precision", "recall", "f1"]
print("Segmentation metrices:")
for metric in metrices:
res = evaluate_with_conf_int(np.array(frame_wise_metrics[metric]), mean, None, conditions=None, num_bootstraps=len(frame_wise_metrics[metric]), alpha=5)
# print(r(res)
print(f" {metric}: {r(res[0])}±{(r(res[1][1]-res[1][0])/2)}")
from sklearn.metrics import mean_absolute_error
mae_start = evaluate_with_conf_int(np.array(tp_diff_start), mean_absolute_error, np.array([0]*len(tp_diff_start)), conditions=None, num_bootstraps=len(tp_diff_start), alpha=5)
print(f"Start MAE: {r(mae_start[0])}±{(r(mae_start[1][1]-mae_start[1][0])/2)}")
mae_end = evaluate_with_conf_int(np.array(tp_diff_end), mean_absolute_error, np.array([0]*len(tp_diff_end)), conditions=None, num_bootstraps=len(tp_diff_end), alpha=5)
print(f"End MAE: {r(mae_end[0])}±{(r(mae_end[1][1]-mae_end[1][0])/2)}")
if __name__ == '__main__':
# main("Petridis2013", 2.6)
# main("McCowan2005", 1.27)
# # main("Liu2022")
# main("Gillick2021")
main("ours")