-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
214 lines (139 loc) · 6.39 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/python
# -*- coding: utf-8 -*-
import argparse
import pandas as pd
import emoji
import xml.etree.ElementTree as ET
import glob
import re
from emoji import UNICODE_EMOJI
import pickle
import os
def iter_docs(author):
author_attr = author.attrib
doc_dict = author_attr.copy()
# print(doc_dict)
doc_dict['text'] = [' '.join([doc.text for doc in author.iter('document')])]
return doc_dict
def create_data_frame(input_folder):
os.chdir(input_folder)
all_xml_files = glob.glob("*.xml")
temp_list_of_DataFrames = []
text_Data = pd.DataFrame()
for file in all_xml_files:
etree = ET.parse(file) # create an ElementTree object
doc_df = pd.DataFrame(iter_docs(etree.getroot()))
doc_df['author_id'] = file[:-4]
temp_list_of_DataFrames.append(doc_df)
text_Data = pd.concat(temp_list_of_DataFrames, axis=0)
return text_Data
def count_emoji(text):
return len([c for c in text if c in UNICODE_EMOJI])
def face_smiling(text):
return len([c for c in text if c in '😀😃😄😁😆😅🤣😂🙂🙃😉😊😇'])
def face_affection(text):
return len([c for c in text if c in '🥰😍🤩😘😗☺😚😙'])
def face_tongue(text):
return len([c for c in text if c in '😋😛😜🤪😝🤑'])
def face_hand(text):
return len([c for c in text if c in '🤗🤭🤫🤔'])
def face_neutral_skeptical(text):
return len([c for c in text if c in '🤐🤨😐😑😶😏😒🙄😬🤥'])
def face_concerned(text):
return len([c for c in text if c in '😕😟🙁☹😮😯😲😳🥺😦😧😨😰😥😢😭😱😖😣😞'])
def monkey_face(text):
return len([c for c in text if c in '🙈🙉🙊'])
def emotions(text):
return len([c for c in text if c in '💋💌💘💝💖💗💓💞💕💟❣💔❤🧡💛💚💙💜🤎🖤'])
def preprocess(data):
print('Preprocessing the Data')
data['face_smiling'] = data['text'].apply(face_smiling)
data['face_affection'] = data['text'].apply(face_affection)
data['face_tongue'] = data['text'].apply(face_tongue)
data['face_hand'] = data['text'].apply(face_hand)
data['face_neutral_skeptical'] = data['text'].apply(face_neutral_skeptical)
data['face_concerned'] = data['text'].apply(face_concerned)
data['monkey_face'] = data['text'].apply(monkey_face)
data['emotions'] = data['text'].apply(emotions)
data['emoji_count'] = data['text'].apply(count_emoji)
data['url_count'] = data['text'].apply(lambda x: len(re.findall('http\S+', x)))
data['space_count'] = data['text'].apply(lambda x: len(re.findall(' ', x)))
data['line_count'] = data['text'].apply(lambda x: len(re.findall('\n', x)))
data['word_count'] = data['text'].apply(lambda x: len(re.findall('[a-zA-Z]', x)))
data['capital_count'] = data['text'].apply(lambda x: len(re.findall('[A-Z]', x)))
data['digits_count'] = data['text'].apply(lambda x: len(re.findall('[0-9]', x)))
data['text_length'] = data['text'].apply(len)
data['curly_brackets_count'] = data['text'].apply(lambda x: len(re.findall('[\{\}]', x)))
data['round_brackets_count'] = data['text'].apply(lambda x: len(re.findall('[\(\)]', x)))
data['round_brackets_count'] = data['text'].apply(lambda x: len(re.findall('\[\]', x)))
data['underscore_count'] = data['text'].apply(lambda x: len(re.findall('[_]', x)))
data['question_mark_count'] = data['text'].apply(lambda x: len(re.findall('[?]', x)))
data['exclamation_mark_count'] = data['text'].apply(lambda x: len(re.findall('[!]', x)))
data['dollar_mark_count'] = data['text'].apply(lambda x: len(re.findall('[$]', x)))
data['ampersand_mark_count'] = data['text'].apply(lambda x: len(re.findall('[&]', x)))
data['hash_count'] = data['text'].apply(lambda x: len(re.findall('[#]', x)))
data['tag_count'] = data['text'].apply(lambda x: len(re.findall('[@]', x)))
data['slashes_count'] = data['text'].apply(lambda x: len(re.findall('[/,\\\\]', x)))
data['operator_count'] = data['text'].apply(lambda x: len(re.findall('[+=\-*%<>^|]', x)))
data['punc_count'] = data['text'].apply(lambda x: len(re.findall('[\'\",.:;`]', x)))
def getArg():
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input", help="Input Directory Path", required=True)
parser.add_argument("-o", "--output", help="Ouput Directory Path", required=True)
args = parser.parse_args()
print("input {} output {} ".format(
args.input,
args.output,
))
return args.input, args.output
def writefiles(data, output, lang):
# try:
# os.mkdir('output')
# except Exception as e:
# print(e) input_folder = input_folder+lang
try:
os.chdir(output)
except Exception as e:
print(e)
try:
os.mkdir(lang)
except Exception as e:
print(e)
try:
os.chdir(lang)
except Exception as e:
print(e)
for index, row in data.iterrows():
print(row['author_id'], row['lang'], row['author'], row['gender'])
root = ET.Element("author", id=row['author_id'], lang=row['lang'], type=row['author'], gender=row['gender'])
tree = ET.ElementTree(root)
tree.write(row['author_id'] + ".xml")
def runWithLang(input_folder,output_folder,lang):
input_folder = os.path.join(input_folder,lang)
data = create_data_frame(input_folder)
preprocess(data)
if data.isnull().values.any():
data.isnull().values.any()
data.fillna(0, inplace=True)
try:
os.chdir(root)
except Exception as e:
print(e)
print(os.getcwd())
authormodel = pickle.load(open(os.path.join('models',lang,'modelBotHuman'), 'rb'))
gendermodel = pickle.load(open(os.path.join('models',lang,'modelMaleFemale'), 'rb'))
author = authormodel.predict(data.drop(['lang', 'text', 'author_id'], axis=1))
gender = gendermodel.predict(data.drop(['lang', 'text', 'author_id'], axis=1))
data['author'] = author
data['gender'] = gender
data.loc[data.author =='bot', 'gender'] ='bot'
writefiles(data,output_folder,lang)
def main():
global root
root = os.getcwd()
input_folder,output_folder = getArg()
# input_folder, output_folder = '/home/omer/oj/pan Research/test/', '/home/omer/oj/pan Research/output/'
runWithLang(input_folder,output_folder,'en')
runWithLang(input_folder,output_folder,'es')
if __name__ == "__main__":
main()