-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFPVSWORDS_PSD_compute.py
executable file
·552 lines (434 loc) · 18.5 KB
/
FPVSWORDS_PSD_compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#!/imaging/local/software/mne_python/mne1.4.0_1/bin/python
"""
Compute PSD for average raw sensor and source data for FPVS.
Reads average raw data from FPVS_get_sweeps.py.
Plot figures.
Compute z-scores.
==========================================
OH, March 2023
"""
import sys
from os import remove
from os import path as op
import numpy as np
# needed to run on SLURM
# os.environ['QT_QPA_PLATFORM'] = 'offscreen'
from copy import deepcopy
# from mayavi import mlab
# mlab.options.offscreen = True
# for running graphics on cluster ### EDIT
# required even if not plotting?
# matplotlib.use('Agg')
from importlib import reload
import mne
from mne_bids import BIDSPath
import config_fpvswords as config
reload(config)
import FPVS_functions as Ff
reload(Ff)
print(mne.__version__)
# conditions
# conds = ['face', 'pwhf', 'pwlf', 'lfhf']
conds = config.do_conds
def run_PSD_raw(sbj_id):
"""Compute spectra for one subject."""
subject = config.mri_subjects[sbj_id]
# path to subject's data
sbj_path = op.join(config.data_path, config.map_subjects[sbj_id][0])
inv_fname = op.join(sbj_path, subject + "_EEGMEG-inv.fif")
print("Reading EEG/MEG inverse operator: %s." % inv_fname)
invop = mne.minimum_norm.read_inverse_operator(inv_fname)
# raw-filename mappings for this subject
sss_map_fname = config.sss_map_fnames[sbj_id]
# initialise sum across harmonics for conditions
sum_harms_odd = {} # for oddball frequency
sum_harms_base = {} # for base frequencies
# topographies for harmonics
topos_harms_odd = {} # for oddball frequency
topos_harms_base = {} # for base frequencies
for cond in conds:
sum_harms_odd[cond] = {}
sum_harms_base[cond] = {}
topos_harms_odd[cond] = {}
topos_harms_base[cond] = {}
# Go through conditions and frequencies
for cond in conds: # conditions
print("###\nCondition: %s.\n###" % cond)
if cond[:4] == "rest":
task = "rest"
else:
task = cond
# create list of Evoked objects for all frequencies per condition
(
psd_all,
psd_z_all,
sum_harms_odd_all,
sum_harms_base_all,
topos_odd_all,
topos_base_all,
psd_harm_odd_all,
psd_harm_base_all,
) = ([], [], [], [], [], [], [], [])
# base and oddball frequencies for this condition
basefreq = config.fpvs_freqs[cond]["base"]
oddfreq = config.fpvs_freqs[cond]["odd"]
for ev_type in config.event_ids[cond]:
# number of bins for z-scores
snr_bins = config.psd_snr_bins
# # initialise for this base frequency
# sum_harms_odd[cond] = []
# sum_harms_base[cond] = []
# topos_harms_odd[cond] = []
# input average raw data; remove dot from frequency string
fname_raw_in = str(
BIDSPath(
subject=str(sbj_id).zfill(2),
processing="avg",
session=None,
task=task,
run=config.conds_runs[cond],
suffix=ev_type,
extension=".fif",
datatype="meg",
root=config.bids_derivatives,
check=False,
).fpath
)
print("Reading average raw data from %s:" % fname_raw_in)
raw = mne.io.read_raw_fif(fname_raw_in, preload=True)
print("Resample to %s Hz." % config.psd_resample)
if config.psd_resample is not None:
raw.resample(sfreq=config.psd_resample)
# reduce raw data to relevant channels
raw.pick(picks=["meg", "eeg"])
print(raw.info["bads"])
print(raw)
# compute_source_psd() returns sensor data only for good channels,
# but for grand-averaging we will require all channels
raw.interpolate_bads(mode="accurate", reset_bads=True)
print("Setting EEG reference.") # apply here
raw.set_eeg_reference(ref_channels="average", projection=False)
# Compute PSD for raw data
# EDIT: find smallest power of 2 larger than number of samples
# n_fft = 2**(len(raw.times) - 1).bit_length()
n_fft = len(raw.times)
print("n_fft: %d" % n_fft)
fmin = config.psd_fmin
fmax = config.psd_fmax
print("###\nComputing psd_welch() from %f to %f Hz." % (fmin, fmax))
# print('Computing psd_welch() in sensor and source space.')
stc_psd, evo_psd = mne.minimum_norm.compute_source_psd(
raw=raw,
inverse_operator=invop,
lambda2=1 / 9.0,
method="MNE",
fmin=fmin,
fmax=fmax,
n_fft=n_fft,
overlap=0.0,
nave=1,
bandwidth="hann",
low_bias=True,
return_sensor=True,
)
# psd_mat, psd_freqs = mne.time_frequency.psd_welch(raw, fmin=fmin, fmax=fmax, n_fft=n_fft)
# raw.del_proj() # remove average reference before using info for PSDs
# info_raw = raw.info
# # in order to turn frequencies into latencies
# sfreq = 1. / (psd_freqs[1] - psd_freqs[0])
# info_raw['sfreq'] = sfreq
# # ch_types = 102 * ['grad', 'grad', 'mag'] + 64 * ['eeg']
# # info_evo = mne.create_info(ch_names=info.ch_names, sfreq=sfreq, ch_types=ch_types)
# evo_psd = mne.EvokedArray(psd_mat, info_raw, tmin=psd_freqs[0])
# psd_all.append(evo_psd)
# turn power to amplitudes
evo_psd.data = np.sqrt(evo_psd.data)
stc_psd.data = np.sqrt(stc_psd.data)
stc_psd.subject = subject
fname_stc = op.join(sbj_path, "STC", "PSDTopo_%s" % cond)
stc_psd.save(fname_stc, overwrite=True)
# frequencies in PSD
psd_freqs = evo_psd.times
print("Frequencies from %f to %f." % (psd_freqs[0], psd_freqs[-1]))
freq_resol = psd_freqs[1] - psd_freqs[0]
print("Frequency resolution:\n%f.\n###" % freq_resol)
# Z-score PSDs with neighbouring frequency bins
print(type(evo_psd))
print("Computing Z-scores for Evoked.")
# inputing Evoked object
psd_z = Ff.psd_z_score(evo_psd, snr_bins, mode="z", n_gap=config.psd_n_gap)
psd_z.comment = "PSDTopoZ_" + cond + "_" + ev_type
# ODDBALL FREQUENCY
print(
"Summing PSDs across %d harmonics for oddball frequency"
% config.fpvs_n_harms_odd
)
# get PSDs around harmonics
(
psd_harm_odd_ori,
topo,
topos,
freqs_harm,
psd_harm_odd_epos,
) = Ff.psds_across_harmonics(
psds=evo_psd,
freqs=psd_freqs,
basefreq=basefreq,
oddfreq=oddfreq,
n_harms=config.fpvs_n_harms_odd,
n_bins=snr_bins,
n_gap=config.psd_n_gap,
skip_harm=config.psd_skip_harm,
method="sum",
)
# get PSDs around harmonics for z-scores
# needed to get z-scored topographies for harmonics
(
psd_harm_odd_z,
topo_z,
topos_z,
freqs_harm_z,
psd_harm_odd_epos_z,
) = Ff.psds_across_harmonics(
psds=psd_z,
freqs=psd_freqs,
basefreq=basefreq,
oddfreq=oddfreq,
n_harms=config.fpvs_n_harms_odd,
n_bins=snr_bins,
n_gap=config.psd_n_gap,
skip_harm=config.psd_skip_harm,
method="sum",
)
print('Compute z-score after summing')
psd_harm_odd = Ff.psd_z_score(
psd_harm_odd_ori, snr_bins, mode="z", n_gap=config.psd_n_gap
)
psd_harm_odd.comment = "PSDHarm_" + cond
# Save epochs around individual harmonics
fname_evo = op.join(
sbj_path, "AVE", "HarmOddEpos_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, psd_harm_odd_epos_z, overwrite=True)
# Topography of z-scored summed harmonics at centre frequency
topo_evo = deepcopy(psd_harm_odd)
topo_evo.crop(tmin=0.0, tmax=0.0)
sum_harms_odd = topo_evo
# sum_harms_odd_all.append(sum_harms_odd[cond])
# z-scored topographies for individual harmonics
topos.comment = " ".join(str(freqs_harm_z))
topos_harms_odd = topos_z
# topos_odd_all.append(topos_harms_odd[cond])
# STCs odd
psd_harm_odd_stc, topo, topos, freqs_harm, _ = Ff.psds_across_harmonics(
psds=stc_psd,
freqs=psd_freqs,
basefreq=basefreq,
oddfreq=oddfreq,
n_harms=config.fpvs_n_harms_odd,
n_bins=snr_bins,
n_gap=config.psd_n_gap,
skip_harm=config.psd_skip_harm,
method="sum",
)
psd_harm_odd_stc.subject = subject
# compute z-score after summing
psd_harm_odd_stc_z = Ff.psd_z_score(
psd_harm_odd_stc, snr_bins, mode="z", n_gap=config.psd_n_gap
)
# save non-z-scored STCs
fname_stc = op.join(sbj_path, "STC", "PSDHarmOdd_%s_%s" % (cond, ev_type))
print("Writing pPSDHarmOdd to %s.\n" % fname_stc)
psd_harm_odd_stc.save(fname_stc, overwrite=True)
# save z-scored STCs
fname_stc = op.join(sbj_path, "STC", "PSDZHarmOdd_%s_%s" % (cond, ev_type))
print("Writing PSDZHarmOdd to %s.\n" % fname_stc)
psd_harm_odd_stc_z.save(fname_stc, overwrite=True)
# STC of summed harmonics at centre frequency
topo_stc = deepcopy(psd_harm_odd_stc)
topo_stc.crop(tmin=0.0, tmax=0.0)
sum_harms_odd_stc = topo_stc
sum_harms_odd_stc.subject = subject
fname_stc = op.join(
sbj_path, "STC", "PSDSumTopoOdd_%s_%s" % (cond, ev_type)
)
print("Writing PSDSumTopoOdd to %s.\n" % fname_stc)
sum_harms_odd_stc.save(fname_stc, overwrite=True)
# STC of z-scored summed harmonics at centre frequency
topo_stc = deepcopy(psd_harm_odd_stc_z)
topo_stc.crop(tmin=0.0, tmax=0.0)
sum_harms_odd_stc = topo_stc
sum_harms_odd_stc.subject = subject
fname_stc = op.join(
sbj_path, "STC", "PSDZSumTopoOdd_%s_%s" % (cond, ev_type)
)
print("Writing PSDZSumTopoOdd to %s.\n" % fname_stc)
sum_harms_odd_stc.save(fname_stc, overwrite=True)
# BASE FREQUENCY
print(
"Summing PSDs across %d harmonics for base frequency"
% config.fpvs_n_harms_base
)
# Sanity check - do it for base frequency
# i.e. basefreq as oddfreq here, for all its harmonics
(
psd_harm_base,
topo,
topos,
freqs_harm,
psd_harm_base_epos,
) = Ff.psds_across_harmonics(
psds=evo_psd,
freqs=psd_freqs,
basefreq=None,
oddfreq=basefreq,
n_harms=config.fpvs_n_harms_base,
n_bins=snr_bins,
n_gap=config.psd_n_gap,
skip_harm=0,
method="sum",
)
# sum across harmonics for z-scores
# needed to get z-scored topographies for harmonics
(
psd_harm_base_z,
topo_z,
topos_z,
freqs_harm_z,
psd_harm_base_epos_z,
) = Ff.psds_across_harmonics(
psds=psd_z,
freqs=psd_freqs,
basefreq=None,
oddfreq=basefreq,
n_harms=config.fpvs_n_harms_base,
n_bins=snr_bins,
n_gap=config.psd_n_gap,
skip_harm=0,
method="sum",
)
# compute z-score after summing
psd_harm_base = Ff.psd_z_score(
psd_harm_base, snr_bins, mode="z", n_gap=config.psd_n_gap
)
# psd_harm_base_all.append(psd_harm_base)
# Save epochs around individual harmonics
fname_evo = op.join(
sbj_path, "AVE", "HarmBaseEpos_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, psd_harm_base_epos_z, overwrite=True)
# Topography of z-scored summed harmonics at centre frequency
topo_evo = deepcopy(psd_harm_base)
topo_evo.crop(tmin=0.0, tmax=0.0)
sum_harms_base = topo_evo
# sum_harms_base_all.append(sum_harms_base[cond])
# z-scored topographies for individual harmonics
topos.comment = " ".join(str(freqs_harm))
topos_harms_base = topos_z
# topos_base_all.append(topos_z)
# STCs base
psd_harm_base_stc, topo, topos, freqs_harm, _ = Ff.psds_across_harmonics(
psds=stc_psd,
freqs=psd_freqs,
basefreq=None,
oddfreq=basefreq,
n_harms=config.fpvs_n_harms_base,
n_bins=snr_bins,
n_gap=config.psd_n_gap,
skip_harm=config.psd_skip_harm,
method="sum",
)
psd_harm_base_stc.subject = subject
# compute z-score after summing
psd_harm_base_stc_z = Ff.psd_z_score(
psd_harm_base_stc, snr_bins, mode="z", n_gap=config.psd_n_gap
)
# save non-z-scored STCs
fname_stc = op.join(sbj_path, "STC", "PSDHarmBase_%s_%s" % (cond, ev_type))
print("Writing PSDHarmBase to %s.\n" % fname_stc)
psd_harm_base_stc.save(fname_stc, overwrite=True)
# save z-scored STCs
fname_stc = op.join(sbj_path, "STC", "PSDZHarmBase_%s_%s" % (cond, ev_type))
print("Writing PSDZHarmBase to %s.\n" % fname_stc)
psd_harm_base_stc_z.save(fname_stc, overwrite=True)
# STC of non-z-scored summed harmonics at centre frequency
topo_stc = deepcopy(psd_harm_base_stc)
topo_stc.crop(tmin=0.0, tmax=0.0)
sum_harms_base_stc = topo_stc
sum_harms_base_stc.subject = subject
fname_stc = op.join(
sbj_path, "STC", "PSDSumTopoBase_%s_%s" % (cond, ev_type)
)
print("Writing PSDSumTopoBase to %s.\n" % fname_stc)
sum_harms_base_stc.save(fname_stc, overwrite=True)
# STC of z-scored summed harmonics at centre frequency
topo_stc = deepcopy(psd_harm_base_stc_z)
topo_stc.crop(tmin=0.0, tmax=0.0)
sum_harms_base_stc = topo_stc
sum_harms_base_stc.subject = subject
fname_stc = op.join(
sbj_path, "STC", "PSDZSumTopoBase_%s_%s" % (cond, ev_type)
)
print("Writing PSDZSumTopoBase to %s.\n" % fname_stc)
sum_harms_base_stc.save(fname_stc, overwrite=True)
# Save Evoked objects for later group stats:
print("Saving PSD results as evoked files:")
# PSD (raw):
fname_evo = op.join(
sbj_path, "AVE", "PSD_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, evo_psd, overwrite=True)
# PSD (z-scored):
fname_evo = op.join(
sbj_path, "AVE", "PSDZ_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, psd_z, overwrite=True)
# Sum PSD segments around harmonics of oddball frequency then z-score:
fname_evo = op.join(
sbj_path, "AVE", "HarmOdd_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, psd_harm_odd, overwrite=True)
# Sum PSD segments around harmonics of base frequency then z-score:
fname_evo = op.join(
sbj_path, "AVE", "HarmBase_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, psd_harm_base, overwrite=True)
# Oddball topography of z-scored summed harmonics at centre frequency:
fname_evo = op.join(
sbj_path, "AVE", "SumTopoOdd_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, sum_harms_odd, overwrite=True)
# Base topography of z-scored summed harmonics at centre frequency:
fname_evo = op.join(
sbj_path, "AVE", "SumTopoBase_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, sum_harms_base, overwrite=True)
# Oddball topographies at centre frequencies for individual harmonics:
fname_evo = op.join(
sbj_path, "AVE", "SumToposOdd_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, topos_harms_odd, overwrite=True)
# Base topographies at centre frequencies for individual harmonics:
fname_evo = op.join(
sbj_path, "AVE", "SumToposBase_%s_%s%s" % (cond, ev_type, "-ave.fif")
)
print(fname_evo)
mne.write_evokeds(fname_evo, topos_harms_base, overwrite=True)
return evo_psd, psd_harm_odd_ori, psd_harm_odd, freqs_harm
# get all input arguments except first
if len(sys.argv) == 1:
sbj_ids = np.arange(0, len(config.map_subjects)) + 1
else:
# get list of subjects IDs to process
sbj_ids = [int(aa) for aa in sys.argv[1:]]
for ss in sbj_ids:
evo_psd, psd_harm_odd_ori, psd_harm_odd, freqs_harm = run_PSD_raw(ss)