forked from blackstonep/Numerical-Recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdelaunay.h
executable file
·282 lines (277 loc) · 8.06 KB
/
delaunay.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
struct Triel {
Point<2> *pts;
Int p[3];
Int d[3];
Int stat;
void setme(Int a, Int b, Int c, Point<2> *ptss) {
pts = ptss;
p[0] = a; p[1] = b; p[2] = c;
d[0] = d[1] = d[2] = -1;
stat = 1;
}
Int contains(Point<2> point) {
Doub d;
Int i,j,ztest = 0;
for (i=0; i<3; i++) {
j = (i+1) %3;
d = (pts[p[j]].x[0]-pts[p[i]].x[0])*(point.x[1]-pts[p[i]].x[1]) -
(pts[p[j]].x[1]-pts[p[i]].x[1])*(point.x[0]-pts[p[i]].x[0]);
if (d < 0.0) return -1;
if (d == 0.0) ztest = 1;
}
return (ztest? 0 : 1);
}
};
Doub incircle(Point<2> d, Point<2> a, Point<2> b, Point<2> c) {
Circle cc = circumcircle(a,b,c);
Doub radd = SQR(d.x[0]-cc.center.x[0]) + SQR(d.x[1]-cc.center.x[1]);
return (SQR(cc.radius) - radd);
}
struct Nullhash {
Nullhash(Int nn) {}
inline Ullong fn(const void *key) const { return *((Ullong *)key); }
};
struct Delaunay {
Int npts,ntri,ntree,ntreemax,opt;
Doub delx,dely;
vector< Point<2> > pts;
vector<Triel> thelist;
Hash<Ullong,Int,Nullhash> *linehash;
Hash<Ullong,Int,Nullhash> *trihash;
Int *perm;
Delaunay(vector<Point<2> > &pvec, Int options = 0);
Ranhash hashfn;
Doub interpolate(const Point<2> &p, const vector<Doub> &fnvals,
Doub defaultval=0.0);
void insertapoint(Int r);
Int whichcontainspt(const Point<2> &p, Int strict = 0);
Int storetriangle(Int a, Int b, Int c);
void erasetriangle(Int a, Int b, Int c, Int d0, Int d1, Int d2);
static Uint jran;
static const Doub fuzz, bigscale;
};
const Doub Delaunay::fuzz = 1.0e-6;
const Doub Delaunay::bigscale = 1000.0;
Uint Delaunay::jran = 14921620;
Delaunay::Delaunay(vector< Point<2> > &pvec, Int options) :
npts(pvec.size()), ntri(0), ntree(0), ntreemax(10*npts+1000),
opt(options), pts(npts+3), thelist(ntreemax) {
Int j;
Doub xl,xh,yl,yh;
linehash = new Hash<Ullong,Int,Nullhash>(6*npts+12,6*npts+12);
trihash = new Hash<Ullong,Int,Nullhash>(2*npts+6,2*npts+6);
perm = new Int[npts];
xl = xh = pvec[0].x[0];
yl = yh = pvec[0].x[1];
for (j=0; j<npts; j++) {
pts[j] = pvec[j];
perm[j] = j;
if (pvec[j].x[0] < xl) xl = pvec[j].x[0];
if (pvec[j].x[0] > xh) xh = pvec[j].x[0];
if (pvec[j].x[1] < yl) yl = pvec[j].x[1];
if (pvec[j].x[1] > yh) yh = pvec[j].x[1];
}
delx = xh - xl;
dely = yh - yl;
pts[npts] = Point<2>(0.5*(xl + xh), yh + bigscale*dely);
pts[npts+1] = Point<2>(xl - 0.5*bigscale*delx,yl - 0.5*bigscale*dely);
pts[npts+2] = Point<2>(xh + 0.5*bigscale*delx,yl - 0.5*bigscale*dely);
storetriangle(npts,npts+1,npts+2);
for (j=npts; j>0; j--) SWAP(perm[j-1],perm[hashfn.int64(jran++) % j]);
for (j=0; j<npts; j++) insertapoint(perm[j]);
for (j=0; j<ntree; j++) {
if (thelist[j].stat > 0) {
if (thelist[j].p[0] >= npts || thelist[j].p[1] >= npts ||
thelist[j].p[2] >= npts) {
thelist[j].stat = -1;
ntri--;
}
}
}
if (!(opt & 1)) {
delete [] perm;
delete trihash;
delete linehash;
}
}
void Delaunay::insertapoint(Int r) {
Int i,j,k,l,s,tno,ntask,d0,d1,d2;
Ullong key;
Int tasks[50], taski[50], taskj[50];
for (j=0; j<3; j++) {
tno = whichcontainspt(pts[r],1);
if (tno >= 0) break;
pts[r].x[0] += fuzz * delx * (hashfn.doub(jran++)-0.5);
pts[r].x[1] += fuzz * dely * (hashfn.doub(jran++)-0.5);
}
if (j == 3) throw("points degenerate even after fuzzing");
ntask = 0;
i = thelist[tno].p[0]; j = thelist[tno].p[1]; k = thelist[tno].p[2];
if (opt & 2 && i < npts && j < npts && k < npts) return;
d0 =storetriangle(r,i,j);
tasks[++ntask] = r; taski[ntask] = i; taskj[ntask] = j;
d1 = storetriangle(r,j,k);
tasks[++ntask] = r; taski[ntask] = j; taskj[ntask] = k;
d2 = storetriangle(r,k,i);
tasks[++ntask] = r; taski[ntask] = k; taskj[ntask] = i;
erasetriangle(i,j,k,d0,d1,d2);
while (ntask) {
s=tasks[ntask]; i=taski[ntask]; j=taskj[ntask--];
key = hashfn.int64(j) - hashfn.int64(i);
if ( ! linehash->get(key,l) ) continue;
if (incircle(pts[l],pts[j],pts[s],pts[i]) > 0.0){
d0 = storetriangle(s,l,j);
d1 = storetriangle(s,i,l);
erasetriangle(s,i,j,d0,d1,-1);
erasetriangle(l,j,i,d0,d1,-1);
key = hashfn.int64(i)-hashfn.int64(j);
linehash->erase(key);
key = 0 - key;
linehash->erase(key);
tasks[++ntask] = s; taski[ntask] = l; taskj[ntask] = j;
tasks[++ntask] = s; taski[ntask] = i; taskj[ntask] = l;
}
}
}
Int Delaunay::whichcontainspt(const Point<2> &p, Int strict) {
Int i,j,k=0;
while (thelist[k].stat <= 0) {
for (i=0; i<3; i++) {
if ((j = thelist[k].d[i]) < 0) continue;
if (strict) {
if (thelist[j].contains(p) > 0) break;
} else {
if (thelist[j].contains(p) >= 0) break;
}
}
if (i == 3) return -1;
k = j;
}
return k;
}
void Delaunay::erasetriangle(Int a, Int b, Int c, Int d0, Int d1, Int d2) {
Ullong key;
Int j;
key = hashfn.int64(a) ^ hashfn.int64(b) ^ hashfn.int64(c);
if (trihash->get(key,j) == 0) throw("nonexistent triangle");
trihash->erase(key);
thelist[j].d[0] = d0; thelist[j].d[1] = d1; thelist[j].d[2] = d2;
thelist[j].stat = 0;
ntri--;
}
Int Delaunay::storetriangle(Int a, Int b, Int c) {
Ullong key;
thelist[ntree].setme(a,b,c,&pts[0]);
key = hashfn.int64(a) ^ hashfn.int64(b) ^ hashfn.int64(c);
trihash->set(key,ntree);
key = hashfn.int64(b)-hashfn.int64(c);
linehash->set(key,a);
key = hashfn.int64(c)-hashfn.int64(a);
linehash->set(key,b);
key = hashfn.int64(a)-hashfn.int64(b);
linehash->set(key,c);
if (++ntree == ntreemax) throw("thelist is sized too small");
ntri++;
return (ntree-1);
}
Doub Delaunay::interpolate(const Point<2> &p,
const vector<Doub> &fnvals, Doub defaultval) {
Int n,i,j,k;
Doub wgts[3];
Int ipts[3];
Doub sum, ans = 0.0;
n = whichcontainspt(p);
if (n < 0) return defaultval;
for (i=0; i<3; i++) ipts[i] = thelist[n].p[i];
for (i=0,j=1,k=2; i<3; i++,j++,k++) {
if (j == 3) j=0;
if (k == 3) k=0;
wgts[k]=(pts[ipts[j]].x[0]-pts[ipts[i]].x[0])*(p.x[1]-pts[ipts[i]].x[1])
- (pts[ipts[j]].x[1]-pts[ipts[i]].x[1])*(p.x[0]-pts[ipts[i]].x[0]);
}
sum = wgts[0] + wgts[1] + wgts[2];
if (sum == 0) throw("degenerate triangle");
for (i=0; i<3; i++) ans += wgts[i]*fnvals[ipts[i]]/sum;
return ans;
}
struct Convexhull : Delaunay {
Int nhull;
Int *hullpts;
Convexhull(vector< Point<2> > pvec);
};
Convexhull::Convexhull(vector< Point<2> > pvec) : Delaunay(pvec,2), nhull(0) {
Int i,j,k,pstart;
vector<Int> nextpt(npts);
for (j=0; j<ntree; j++) {
if (thelist[j].stat != -1) continue;
for (i=0,k=1; i<3; i++,k++) {
if (k == 3) k=0;
if (thelist[j].p[i] < npts && thelist[j].p[k] < npts) break;
}
if (i==3) continue;
++nhull;
nextpt[(pstart = thelist[j].p[k])] = thelist[j].p[i];
}
if (nhull == 0) throw("no hull segments found");
hullpts = new Int[nhull];
j=0;
i = hullpts[j++] = pstart;
while ((i=nextpt[i]) != pstart) hullpts[j++] = i;
}
struct Minspantree : Delaunay {
Int nspan;
VecInt minsega, minsegb;
Minspantree(vector< Point<2> > pvec);
};
Minspantree::Minspantree(vector< Point<2> > pvec) :
Delaunay(pvec,0), nspan(npts-1), minsega(nspan), minsegb(nspan) {
Int i,j,k,jj,kk,m,tmp,nline,n = 0;
Triel tt;
nline = ntri + npts -1;
VecInt sega(nline);
VecInt segb(nline);
VecDoub segd(nline);
VecInt mo(npts);
for (j=0; j<ntree; j++) {
if (thelist[j].stat == 0) continue;
tt = thelist[j];
for (i=0,k=1; i<3; i++,k++) {
if (k==3) k=0;
if (tt.p[i] > tt.p[k]) continue;
if (tt.p[i] >= npts || tt.p[k] >= npts) continue;
sega[n] = tt.p[i];
segb[n] = tt.p[k];
segd[n] = dist(pts[sega[n]],pts[segb[n]]);
n++;
}
}
Indexx idx(segd);
for (j=0; j<npts; j++) mo[j] = j;
n = -1;
for (i=0; i<nspan; i++) {
for (;;) {
jj = j = idx.el(sega,++n);
kk = k = idx.el(segb,n);
while (mo[jj] != jj) jj = mo[jj];
while (mo[kk] != kk) kk = mo[kk];
if (jj != kk) {
minsega[i] = j;
minsegb[i] = k;
m = mo[jj] = kk;
jj = j;
while (mo[jj] != m) {
tmp = mo[jj];
mo[jj] = m;
jj = tmp;
}
kk = k;
while (mo[kk] != m) {
tmp = mo[kk];
mo[kk] = m;
kk = tmp;
}
break;
}
}
}
}