forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
333 lines (274 loc) · 12.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import argparse
import json
import os
from pathlib import Path
import tensorrt as trt
import torch
from transformers import AutoTokenizer
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm import logger
from tensorrt_llm.runtime import Session, TensorInfo
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def trt_dtype_to_torch(dtype):
if dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
elif dtype == trt.int32:
return torch.int32
else:
raise TypeError("%s is not supported" % dtype)
def TRTOPT(args, config):
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
use_gpt_attention_plugin = bool(
config['plugin_config']['gpt_attention_plugin'])
world_size = config['builder_config']['tensor_parallel']
num_heads = config['builder_config']['num_heads'] // world_size
hidden_size = config['builder_config']['hidden_size'] // world_size
vocab_size = config['builder_config']['vocab_size']
num_layers = config['builder_config']['num_layers']
remove_input_padding = config['plugin_config']['remove_input_padding']
use_prompt_tuning = config['builder_config']['use_prompt_tuning']
model_config = tensorrt_llm.runtime.ModelConfig(
vocab_size=vocab_size,
num_layers=num_layers,
num_heads=num_heads,
num_kv_heads=num_heads,
hidden_size=hidden_size,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=remove_input_padding,
use_prompt_tuning=use_prompt_tuning,
dtype=dtype)
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = get_engine_name('opt', dtype, world_size, runtime_rank)
serialize_path = os.path.join(args.opt_engine_dir, engine_name)
tensorrt_llm.logger.set_level(args.log_level)
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
engine_buffer,
runtime_mapping)
dtype = config['builder_config']['precision']
max_input_len = config['builder_config']['max_input_len']
return decoder, model_config, world_size, dtype, max_input_len
def ptuning_setup(prompt_table, dtype, hidden_size, tasks, input_ids,
input_lengths, remove_input_padding):
if prompt_table is not None:
task_vocab_size = torch.tensor([prompt_table.shape[1]],
dtype=torch.int32,
device="cuda")
prompt_table = prompt_table.view(
(prompt_table.shape[0] * prompt_table.shape[1],
prompt_table.shape[2]))
prompt_table = prompt_table.cuda().to(
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
else:
prompt_table = torch.empty([1, hidden_size]).cuda()
task_vocab_size = torch.zeros([1]).cuda()
if tasks is not None:
tasks = torch.tensor([int(t) for t in tasks.split(',')],
dtype=torch.int32,
device="cuda")
assert tasks.shape[0] == input_ids.shape[
0], "Number of supplied tasks must match input batch size"
else:
tasks = torch.zeros([input_ids.size(0)], dtype=torch.int32).cuda()
if remove_input_padding:
tasks = torch.concat([
torch.full([input_lengths[b].item()],
tasks[b].item(),
dtype=torch.int32) for b in range(len(input_lengths))
]).unsqueeze(0).cuda()
else:
tasks = tasks.unsqueeze(-1) #.expand(*input_ids.shape)
return [prompt_table, tasks, task_vocab_size]
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, default=30)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--engine_dir', type=str, default='./plan')
parser.add_argument('--input_dir', type=str, default='image.pt')
parser.add_argument('--query_tokens', type=str, default='query_tokens.pt')
parser.add_argument('--opt_engine_dir',
type=str,
default='trt_engine/blip-2-opt-2.7b/fp16/1-gpu/')
parser.add_argument('--hf_model_location',
type=str,
default="facebook/opt-2.7b")
parser.add_argument('--input_text',
type=str,
default='Question: which city is this? Answer:')
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--max_txt_len',
type=int,
help="Max text prompt length",
default=32)
parser.add_argument('--top_k', type=int, default=1)
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
stream = torch.cuda.current_stream().cuda_stream
### 0. ViT & Qformer session load ###
vit_path = os.path.join(args.engine_dir,
'visual_encoder/visual_encoder_fp16.plan')
logger.info(f'Loading engine from {vit_path}')
with open(vit_path, 'rb') as f:
engine_buffer = f.read()
logger.info(f'Creating session from engine {vit_path}')
session_vit = Session.from_serialized_engine(engine_buffer)
qformer_path = os.path.join(args.engine_dir, 'Qformer/Qformer_fp16.plan')
logger.info(f'Loading engine from {qformer_path}')
with open(qformer_path, 'rb') as f:
engine_buffer_qformer = f.read()
logger.info(f'Creating session from engine {qformer_path}')
session_qformer = Session.from_serialized_engine(engine_buffer_qformer)
### 1. ViT inference session ###
image = torch.load(args.input_dir)
batch_size = 1
image = image.expand(batch_size, -1, -1, -1).contiguous()
# assert image.iscontigous()
visual_inputs = {'input': image.float()}
visual_output_info = session_vit.infer_shapes(
[TensorInfo('input', trt.DataType.FLOAT, image.shape)])
visual_outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in visual_output_info
}
ok = session_vit.run(visual_inputs, visual_outputs, stream)
assert ok, "Runtime execution failed for vit session"
image_embeds = visual_outputs['output']
image_atts = torch.ones(image_embeds.size()[:-1],
dtype=torch.long).to(image.device)
### 2. Qformer inference session ###
query_tokens = torch.load(args.query_tokens)
query_tokens = query_tokens.expand(image_embeds.shape[0], -1,
-1).contiguous()
# assert query_tokens.is_contiguous()
qformer_inputs = {
'query_tokens': query_tokens.float(),
'image_embeds': image_embeds.float(),
'image_atts': image_atts
}
qformer_output_info = session_qformer.infer_shapes([
TensorInfo('query_tokens', trt.DataType.FLOAT, query_tokens.shape),
TensorInfo('image_embeds', trt.DataType.FLOAT, image_embeds.shape),
TensorInfo('image_atts', trt.DataType.INT64, image_atts.shape)
])
qformer_outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in qformer_output_info
}
ok = session_qformer.run(qformer_inputs, qformer_outputs, stream)
assert ok, "Runtime execution failed for Qformer session"
inputs_opt = qformer_outputs["query_output"]
atts_opt = torch.ones(inputs_opt.size()[:-1],
dtype=torch.long).to(image.device)
### 3. OPT inference session
prompt = args.input_text
prompt = [prompt] * image.size(0)
opt_tokenizer = AutoTokenizer.from_pretrained(args.hf_model_location,
use_fast=False)
opt_tokenizer.padding_side = "right"
end_id = opt_tokenizer("\n", add_special_tokens=False).input_ids[0]
# end_id = opt_tokenizer.encode(opt_tokenizer.eos_token, add_special_tokens=False)[0]
engine_dir = Path(args.opt_engine_dir)
config_path = engine_dir / 'config.json'
with open(config_path, 'r') as f:
config = json.load(f)
tensorrt_llm_opt, model_config, world_size, dtype, max_input_len = TRTOPT(
args, config)
vocab_size = model_config.vocab_size
def opt_blip2(prompt, inputs_opt, atts_opt):
profiler.start("OPT")
opt_tokens = opt_tokenizer(
prompt,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=args.max_txt_len,
).to(image.device)
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1)
input_lengths = torch.sum(attention_mask, dim=1).to(torch.int32).cuda()
sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=end_id,
pad_id=end_id,
top_k=args.top_k,
num_beams=args.num_beams)
# Assemble fake prompts which points to image embedding actually
fake_prompt_id = torch.arange(vocab_size,
vocab_size +
inputs_opt.shape[0] * inputs_opt.shape[1],
device='cuda')
fake_prompt_id = fake_prompt_id.reshape(inputs_opt.shape[0],
inputs_opt.shape[1])
input_ids = torch.cat([fake_prompt_id, opt_tokens.input_ids],
dim=1).contiguous()
input_ids = input_ids.to(torch.int32).cuda()
ptuning_args = ptuning_setup(inputs_opt, dtype,
model_config.hidden_size, None, input_ids,
input_lengths,
model_config.remove_input_padding)
with torch.no_grad():
max_input_length = torch.max(input_lengths).item()
tensorrt_llm_opt.setup(batch_size,
max_context_length=max_input_length,
max_new_tokens=args.max_output_len)
if tensorrt_llm_opt.remove_input_padding:
output_ids = tensorrt_llm_opt.decode_batch(
input_ids, sampling_config, *ptuning_args)
else:
output_ids = tensorrt_llm_opt.decode(input_ids, input_lengths,
sampling_config,
*ptuning_args)
torch.cuda.synchronize()
profiler.stop("OPT")
# Extract a list of tensors of shape beam_width x output_ids.
output_beams_list = [
opt_tokenizer.batch_decode(output_ids[batch_idx, :,
input_lengths[batch_idx]:],
skip_special_tokens=True)
for batch_idx in range(batch_size)
]
stripped_text = [[
output_beams_list[batch_idx][beam_idx].strip()
for beam_idx in range(args.num_beams)
] for batch_idx in range(batch_size)]
return stripped_text
for _ in range(100):
stripped_text = opt_blip2(prompt, inputs_opt, atts_opt)
logger.info("---------------------------------------------------------")
logger.info("TensorRT-LLM BLIP-2 : ")
logger.info(f"\n[Q] {args.input_text}")
logger.info(f"\n[A] {stripped_text}")
logger.info(
f'TensorRT-LLM OPT latency: {profiler.elapsed_time_in_sec("OPT") / 100} sec'
)
logger.info("---------------------------------------------------------")
for i in range(100):
profiler.start("visual encoder")
ok = session_vit.run(visual_inputs, visual_outputs, stream)
profiler.stop("visual encoder")
profiler.start("Qformer")
ok = session_qformer.run(qformer_inputs, qformer_outputs, stream)
profiler.stop("Qformer")
logger.info(
f'TensorRT-LLM ViT latency: {profiler.elapsed_time_in_sec("visual encoder") / 100} sec'
)
logger.info(
f'TensorRT-LLM Qformer latency: {profiler.elapsed_time_in_sec("Qformer") / 100} sec'
)