forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild.py
249 lines (228 loc) · 10.1 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from collections import OrderedDict
import tensorrt as trt
import torch
from transformers import BertConfig, BertForQuestionAnswering, BertModel
import tensorrt_llm
from tensorrt_llm.builder import Builder
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from weight import load_from_hf_bert, load_from_hf_qa_bert # isort:skip
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='Tensor parallelism size')
parser.add_argument('--rank', type=int, default=0)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16', 'float32'])
parser.add_argument('--timing_cache', type=str, default='model.cache')
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=51200)
parser.add_argument('--n_labels', type=int, default=2)
parser.add_argument('--n_layer', type=int, default=24)
parser.add_argument('--n_positions', type=int, default=1024)
parser.add_argument('--n_embd', type=int, default=1024)
parser.add_argument('--n_head', type=int, default=16)
parser.add_argument('--hidden_act', type=str, default='gelu')
parser.add_argument('--max_batch_size', type=int, default=256)
parser.add_argument('--max_input_len', type=int, default=512)
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument('--output_dir', type=str, default='bert_outputs')
parser.add_argument('--use_bert_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_layernorm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--enable_qk_half_accum',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument(
'--model',
default=tensorrt_llm.models.BertModel.__name__,
choices=[
tensorrt_llm.models.BertModel.__name__,
tensorrt_llm.models.BertForQuestionAnswering.__name__
])
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
bs_range = [1, (args.max_batch_size + 1) // 2, args.max_batch_size]
inlen_range = [1, (args.max_input_len + 1) // 2, args.max_input_len]
torch_dtype = torch.float16 if args.dtype == 'float16' else torch.float32
trt_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
builder = Builder()
builder_config = builder.create_builder_config(
name=args.model,
precision=args.dtype,
timing_cache=args.timing_cache,
tensor_parallel=args.world_size, # TP only
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
)
# Initialize model
bert_config = BertConfig(
vocab_size=args.vocab_size,
hidden_size=args.n_embd,
num_hidden_layers=args.n_layer,
num_attention_heads=args.n_head,
intermediate_size=4 * args.n_embd,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
torch_dtype=torch_dtype,
)
output_name = 'hidden_states'
if args.model == tensorrt_llm.models.BertModel.__name__:
hf_bert = BertModel(bert_config, add_pooling_layer=False)
tensorrt_llm_bert = tensorrt_llm.models.BertModel(
num_layers=bert_config.num_hidden_layers,
num_heads=bert_config.num_attention_heads,
hidden_size=bert_config.hidden_size,
vocab_size=bert_config.vocab_size,
hidden_act=bert_config.hidden_act,
max_position_embeddings=bert_config.max_position_embeddings,
type_vocab_size=bert_config.type_vocab_size,
mapping=Mapping(world_size=args.world_size,
rank=args.rank,
tp_size=args.world_size), # TP only
dtype=trt_dtype)
load_from_hf_bert(
tensorrt_llm_bert,
hf_bert,
bert_config,
rank=args.rank,
tensor_parallel=args.world_size,
fp16=(args.dtype == 'float16'),
)
elif args.model == tensorrt_llm.models.BertForQuestionAnswering.__name__:
hf_bert = BertForQuestionAnswering(bert_config)
tensorrt_llm_bert = tensorrt_llm.models.BertForQuestionAnswering(
num_layers=bert_config.num_hidden_layers,
num_heads=bert_config.num_attention_heads,
hidden_size=bert_config.hidden_size,
vocab_size=bert_config.vocab_size,
hidden_act=bert_config.hidden_act,
max_position_embeddings=bert_config.max_position_embeddings,
type_vocab_size=bert_config.type_vocab_size,
num_labels=args.
n_labels, # TODO: this might just need to be a constant
mapping=Mapping(world_size=args.world_size,
rank=args.rank,
tp_size=args.world_size), # TP only
dtype=trt_dtype)
load_from_hf_qa_bert(
tensorrt_llm_bert,
hf_bert,
bert_config,
rank=args.rank,
tensor_parallel=args.world_size,
fp16=(args.dtype == 'float16'),
)
output_name = 'logits'
else:
assert False, f"Unknown BERT model {args.model}"
# Module -> Network
network = builder.create_network()
if args.use_bert_attention_plugin:
network.plugin_config.set_bert_attention_plugin(
dtype=args.use_bert_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=args.use_layernorm_plugin)
if args.enable_qk_half_accum:
network.plugin_config.enable_qk_half_accum()
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_bert.named_parameters())
# Forward
input_ids = tensorrt_llm.Tensor(
name='input_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([('batch_size', [bs_range]),
('input_len', [inlen_range])]),
)
# also called segment_ids
token_type_ids = tensorrt_llm.Tensor(
name='token_type_ids',
dtype=trt.int32,
shape=[-1, -1],
dim_range=OrderedDict([('batch_size', [bs_range]),
('input_len', [inlen_range])]),
)
input_lengths = tensorrt_llm.Tensor(name='input_lengths',
dtype=trt.int32,
shape=[-1],
dim_range=OrderedDict([
('batch_size', [bs_range])
]))
# logits for QA BERT, or hidden_state for vanila BERT
output = tensorrt_llm_bert(input_ids=input_ids,
input_lengths=input_lengths,
token_type_ids=token_type_ids)
# Mark outputs
output_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
output.mark_output(output_name, output_dtype)
# Network -> Engine
engine = builder.build_engine(network, builder_config)
assert engine is not None, 'Failed to build engine.'
engine_file = os.path.join(
args.output_dir,
get_engine_name(args.model, args.dtype, args.world_size, args.rank))
with open(engine_file, 'wb') as f:
f.write(engine)
builder.save_config(builder_config,
os.path.join(args.output_dir, 'config.json'))