-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·217 lines (182 loc) · 7.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import math
import torch
import numpy as np
from tqdm.auto import tqdm
from copy import deepcopy
from inspect import getmembers, isfunction
from metric_calculators import get_metric_fns
import random
class FractionalDataloader:
def __init__(self, dataloader, fraction, seed=None):
self.dataloader_numel = len(dataloader.dataset)
self.numel = int(fraction * self.dataloader_numel)
self.batch_size = self.dataloader_numel / len(dataloader)
self.num_batches = int(math.ceil(self.numel / self.batch_size))
self.dataloader = dataloader
self.dataset = self.dataloader.dataset
self.seed = seed
def __iter__(self):
cur_elems = 0
if self.seed is not None:
self.dataloader.dataset.set_seed(self.seed)
torch.manual_seed(self.seed)
random.seed(self.seed)
np.random.seed(self.seed)
it = iter(self.dataloader)
while cur_elems < self.numel:
try:
x, y = next(it)
cur_elems += x.shape[0]
yield x, y
except StopIteration:
it = iter(self.dataloader)
def __len__(self):
return self.num_batches
def prepare_data(config, device='cuda'):
""" Load all dataloaders required for experiment. """
if isinstance(config, list):
return [prepare_data(c, device) for c in config]
dataset_name = config['name']
import my_datasets.configs as config_module
data_config = deepcopy(getattr(config_module, dataset_name))
data_config.update(config)
data_config['device'] = device
if data_config['type'] == 'books':
from my_datasets.books import prepare_train_loaders
train_loaders = prepare_train_loaders(data_config)
test_loaders = None
elif data_config['type'] == 'glue':
from my_datasets.glue import prepare_train_loaders
train_loaders = prepare_train_loaders(data_config)
test_loaders = None
else:
raise NotImplementedError(config['type'])
if 'train_fraction' in data_config:
for k, v in dict(train_loaders.items()).items():
if k == 'splits':
train_loaders[k] = [FractionalDataloader(x, data_config['train_fraction']) for x in v]
elif not isinstance(v, list) and not isinstance(v, torch.Tensor):
train_loaders[k] = FractionalDataloader(v, data_config['train_fraction'])
return {
'train': train_loaders,
'test': test_loaders
}
def prepare_bert(config, device, repair=False, classifier=False):
from transformers import BertForMaskedLM, BertForSequenceClassification
bases = []
config_example = None
for i, base_path in tqdm(enumerate(config['bases']), desc="Preparing Models"):
if classifier:
base_model = BertForSequenceClassification.from_pretrained(base_path)
else:
base_model = BertForMaskedLM.from_pretrained(base_path)
config_example = base_model.config
bases.append(base_model)
if repair != False:
from models.bert_bn import BertBNForMaskedLM
new_model = BertBNForMaskedLM(config_example, rescale=False)
elif classifier == True:
new_model = deepcopy(base_model)
else:
new_model = BertForMaskedLM(config_example)
return {'bases': bases, 'new': new_model}
def prepare_models(config, device='cuda', repair=False, classifier=False):
""" Load all pretrained models in config. """
if config['name'].startswith('bert'):
return prepare_bert(config, device, repair=repair, classifier=classifier)
else:
# can add more models here
raise NotImplementedError(config['name'])
def prepare_graph(config, classifier=False):
""" Get graph class of experiment models in config. """
if config['name'].startswith('bert'):
import graphs.transformer_enc_graph as graph_module
model_name = 'bert'
graph = getattr(graph_module, model_name)
else:
raise NotImplementedError(config['name'])
return graph
def get_merging_fn(name):
""" Get alignment function from name. """
import matching_functions
matching_fns = dict([(k, v) for (k, v) in getmembers(matching_functions, isfunction) if 'match_tensors' in k])
return matching_fns[name]
def prepare_experiment_config(config, type='vis'):
""" Load all functions/classes/models requested in config to experiment config dict. """
data = prepare_data(config['dataset'], device=config['device'])
if config['eval_type'] == 'logits':
config['model']['output_dim'] = len(data['test']['class_names'])
else:
config['model']['output_dim'] = 512
new_config = {
'graph': prepare_graph(config['model']),
'data': data,
'models': prepare_models(config['model'], device=config['device']),
'merging_fn': get_merging_fn(config['merging_fn']),
'metric_fns': get_metric_fns(config['merging_metrics']),
}
# Add outstanding elements
for key in config:
if key not in new_config:
new_config[key] = config[key]
return new_config
def prepare_lang_config(config, type='vis', repair=False, classifier=False):
""" Load all functions/classes/models requested in config to experiment config dict. """
data = prepare_data(config['dataset'], device=config['device'])
new_config = {
'graph': prepare_graph(config['model'], classifier=classifier),
'data': data,
'models': prepare_models(config['model'], device=config['device'], repair=repair, classifier=classifier),
'merging_fn': get_merging_fn(config['merging_fn']),
'metric_fns': get_metric_fns(config['merging_metrics']),
}
# Add outstanding elements
for key in config:
if key not in new_config:
new_config[key] = config[key]
return new_config
def get_config_from_name(name, device=None):
""" Load config based on its name. """
out = deepcopy(getattr(__import__('configs.' + name), name).config)
if device is None and 'device' not in out:
out['device'] = 'cuda'
elif device is not None:
out['device'] = device
return out
def set_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def contains_name(layer_name, node_list):
for node in node_list:
if node in layer_name:
return True
return False
def find_pairs(str_splits):
pairs = []
for i, str_split_i in enumerate(str_splits):
try:
split_i = set([int(k) for k in str_split_i.split('_')])
except:
continue
for str_split_j in str_splits[i+1:]:
try:
split_j = set([int(k) for k in str_split_j.split('_')])
except:
continue
if len(split_i.intersection(split_j)) == 0:
pairs.append((str_split_i, str_split_j))
return pairs
def split_str_to_ints(split):
return [int(i) for i in split.split('_')]
def is_valid_pair(model_dir, pair, model_type):
paths = os.listdir(os.path.join(model_dir, pair[0]))
flag = True
for path in paths:
if f'{model_type}_v0.pth.tar' not in path:
flag = False
return flag
def inject_pair_language(config, pair):
config['model']['bases'] = [os.path.join(config['model']['dir'], pair_item) for pair_item in pair]
return config