forked from AIAnytime/Text-to-Music-Generation-App
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp copy.py
100 lines (76 loc) · 2.9 KB
/
app copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from audiocraft.models import MusicGen
import streamlit as st
import torch
import torchaudio
import os
import numpy as np
import base64
@st.cache_resource
def load_model():
model = MusicGen.get_pretrained('facebook/musicgen-small')
return model
def generate_music_tensors(description, duration: int):
print("Description: ", description)
print("Duration: ", duration)
model = load_model()
model.set_generation_params(
use_sampling=True,
top_k=250,
duration=duration
)
output = model.generate(
descriptions=[description],
progress=True,
return_tokens=True
)
return output[0]
def save_audio(samples: torch.Tensor):
"""Renders an audio player for the given audio samples and saves them to a local directory.
Args:
samples (torch.Tensor): a Tensor of decoded audio samples
with shapes [B, C, T] or [C, T]
sample_rate (int): sample rate audio should be displayed with.
save_path (str): path to the directory where audio should be saved.
"""
print("Samples (inside function): ", samples)
sample_rate = 32000
save_path = "audio_output/"
assert samples.dim() == 2 or samples.dim() == 3
samples = samples.detach().cpu()
if samples.dim() == 2:
samples = samples[None, ...]
for idx, audio in enumerate(samples):
audio_path = os.path.join(save_path, f"audio_{idx}.wav")
torchaudio.save(audio_path, audio, sample_rate)
def get_binary_file_downloader_html(bin_file, file_label='File'):
with open(bin_file, 'rb') as f:
data = f.read()
bin_str = base64.b64encode(data).decode()
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>'
return href
st.set_page_config(
page_icon= "musical_note",
page_title= "Music Gen"
)
def main():
st.title("Text to Music Generator🎵")
with st.expander("See explanation"):
st.write("Music Generator app built using Meta's Audiocraft library. We are using Music Gen Small model.")
text_area = st.text_area("Enter your description.......")
time_slider = st.slider("Select time duration (In Seconds)", 0, 20, 10)
if text_area and time_slider:
st.json({
'Your Description': text_area,
'Selected Time Duration (in Seconds)': time_slider
})
st.subheader("Generated Music")
music_tensors = generate_music_tensors(text_area, time_slider)
print("Musci Tensors: ", music_tensors)
save_music_file = save_audio(music_tensors)
audio_filepath = 'audio_output/audio_0.wav'
audio_file = open(audio_filepath, 'rb')
audio_bytes = audio_file.read()
st.audio(audio_bytes)
st.markdown(get_binary_file_downloader_html(audio_filepath, 'Audio'), unsafe_allow_html=True)
if __name__ == "__main__":
main()