-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
358 lines (310 loc) · 20.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import torch
import argparse
from nerf.provider import NeRFDataset
from nerf.utils import *
import torchvision.transforms as T
from scipy.ndimage import median_filter
# BLIP
from transformers import Blip2Processor, Blip2ForConditionalGeneration
from PIL import Image
# torch.autograd.set_detect_anomaly(True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mesh_pcd',action='store_true', help="using mesh sampled point cloud")
parser.add_argument('--refine_W', type=int, default=800, help="GUI width")
parser.add_argument('--refine_H', type=int, default=800, help="GUI width")
parser.add_argument('--process_mask',action='store_true', help="process mask use SAM")
parser.add_argument('--text', default=None, help="text prompt")
parser.add_argument('--class_name', default=None, type=str, help="the class name used in dreambooth")
parser.add_argument('--trained_model_path', default=None, type=str, help="the path of learned model")
parser.add_argument('--edge_threshold', type=float, default=0.1,
help="remove edges with value > threshold")
parser.add_argument('--edge_width', type=float, default=5,
help="edge width")
parser.add_argument('--no_recon_loss',action='store_true', help="don't use recon_loss in mvdream guidance")
parser.add_argument('--negative', default='', type=str, help="negative text prompt")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--final', action='store_true', help="final train mode")
parser.add_argument('--refine', action='store_true', help="refine mode")
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
parser.add_argument('--workspace', type=str, default='workspace')
parser.add_argument('--guidance', type=str,nargs='*', default=['stable-diffusion','zero123'], help='choose from [stable-diffusion, clip, zero123]')
parser.add_argument('--zero123_config', type=str,
default='./pretrained/zero123/sd-objaverse-finetune-c_concat-256.yaml', help="config file for zero123")
parser.add_argument('--zero123_ckpt', type=str,
default='./pretrained/zero123/zero123-xl.ckpt', help="ckpt for zero123")
parser.add_argument('--zero123_grad_scale', type=str, default='angle',
help="whether to scale the gradients based on 'angle' or 'None' or 'fix' ")
parser.add_argument('--mvdream_config', type=str,
default='./MVDream/mvdream/configs/sd-v2-base.yaml', help="config file for MVDream")
parser.add_argument('--mvdream_ckpt', type=str,
default=None, help="ckpt for MVDream")
parser.add_argument('--seed', type=int, default=0)
# parser.add_argument('--depth_model', type=str, default='dpt_hybrid', help='choose from [dpt_large, dpt_hybrid]')
parser.add_argument('--guidance_scale', type=float,nargs='*', default=[10,5],help="diffusion model classifier-free guidance scale")
parser.add_argument('--lambda_guidance', type=float, nargs='*',
default=[1,40], help="loss scale for SDS")
parser.add_argument('--need_back', action='store_true', help="use back text prompt")
parser.add_argument('--suppress_face', action='store_true', help="also use negative dir text prompt.")
parser.add_argument('--ref_path', default=None, type=str, help="use image as referance, only support alpha image")
### training options
parser.add_argument('--iters', type=int, default=10000, help="training iters")
parser.add_argument('--refine_iters', type=int, default=3000, help="refine iters")
parser.add_argument('--lr', type=float, default=1e-3, help="max learning rate")
parser.add_argument('--min_lr', type=float, default=1e-4, help="minimal learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=512, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=32, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading")
parser.add_argument('--uniform_sphere_rate', type=float, default=0.5, help="likelihood of sampling camera location uniformly on the sphere surface area")
parser.add_argument('--diff_iters', type=int, default=400, help="training iters that only use albedo shading")
parser.add_argument('--step_range', type=float, nargs='*', default=[0.2, 0.6])
parser.add_argument('--normal_iters', type=int, default=0, help="training iters that only use normal shading")
parser.add_argument('--batch_size', type=int, default=1, help="images to render per batch using NeRF")
# model options
parser.add_argument('--bg_radius', type=float, default=-1, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
parser.add_argument('--blob_density', type=float, default=5, help="max (center) density for the gaussian density blob")
parser.add_argument('--blob_radius', type=float, default=0.2, help="control the radius for the gaussian density blob")
# network backbone
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--backbone', type=str, default='tcnn', choices=['grid', 'tcnn', 'sdf', 'vanilla', 'normal'], help="nerf backbone")
parser.add_argument('--optim', type=str, default='adan', choices=['adan', 'adam', 'adamw'], help="optimizer")
parser.add_argument('--sd_version', type=str, default='2.0', choices=['1.5', '2.0'], help="stable diffusion version")
parser.add_argument('--hf_key', type=str, default=None, help="hugging face Stable diffusion model key")
# rendering resolution in training, decrease this if CUDA OOM.
parser.add_argument('--w', type=int, default=128, help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=128, help="render height for NeRF in training")
### dataset options
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
parser.add_argument('--fov', type=float, default=60, help="training camera fovy range")
parser.add_argument('--fovy_range', type=float, nargs='*', default=[50, 70], help="training camera fovy range")
parser.add_argument('--theta_range', type=float, nargs='*', default=[70, 110], help="training camera phi range")
parser.add_argument('--phi_range', type=float, nargs='*', default=[-180, 180], help="training camera phi range")
parser.add_argument('--default_radius', type=float, default=1,
help="radius for the default view")
parser.add_argument('--default_polar', type=float,
default=90, help="polar for the default view, 90 is front")
parser.add_argument('--default_azimuth', type=float,
default=0, help="azimuth for the default view")
parser.add_argument('--lambda_entropy', type=float, default=1, help="loss scale for alpha entropy")
parser.add_argument('--lambda_opacity', type=float, default=1e-3, help="loss scale for alpha value")
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
parser.add_argument('--lambda_smooth', type=float, default=1, help="loss scale for surface smoothness")
parser.add_argument('--lambda_img', type=float, default=1e3, help="loss scale for ref loss")
parser.add_argument('--lambda_depth', type=float, default=1, help="loss scale for depth loss")
parser.add_argument('--lambda_clip', type=float, default=1, help="loss scale for clip loss")
parser.add_argument('--lambda_normal_smooth2d', type=float, default=0,
help="loss scale for second-order 2D normal image smoothness")
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
parser.add_argument('--max_depth', type=float, default=10.0, help="farthest depth")
opt = parser.parse_args()
opt.cuda_ray = True
optDict = opt.__dict__
opt.experiment = opt.workspace
opt.workspace = os.path.join('results', opt.workspace)
if opt.workspace is not None:
os.makedirs(opt.workspace, exist_ok=True)
# optimization for low VRAM usage
opt.vram_O = False
# opt.ref_paths, opt.ref_radii, opt.ref_polars, opt.ref_azimuths, opt.zero123_ws = [], [], [], [], []
opt.default_zero123_w = 1
opt.use_mvdream = False
# parameters for image-conditioned generation
if opt.ref_path is not None :
if 'zero123' in opt.guidance:
# fix fov as zero123 doesn't support changing fov
opt.fovy_range = [opt.fov, opt.fov]
# else:
# opt.known_view_interval = 2
if 'stable-diffusion' in opt.guidance:
opt.step_range = [0.2, 0.6]
# don't use background model at sphere
opt.bg_radius = -1
if 'mvdream' in opt.guidance:
opt.use_mvdream = True
if opt.ref_path is not None:
opt.ref_radii = opt.default_radius
opt.ref_polars = opt.default_polar
opt.ref_azimuths = opt.default_azimuth
opt.zero123_ws = opt.default_zero123_w
# reset to None
if len(opt.ref_path) == 0:
opt.ref_path = None
if opt.backbone == 'vanilla':
from nerf.network import NeRFNetwork
elif opt.backbone == 'tcnn':
from nerf.network_tcnn import NeRFNetwork
else:
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
print(opt)
seed_everything(opt.seed)
# # load depth network
# net_w = net_h = 384
# depth_model = DPTDepthModel(
# path="dpt_weights/dpt_hybrid-midas-501f0c75.pt",
# backbone="vitb_rn50_384",
# non_negative=True,
# enable_attention_hooks=False,
# )
# depth_transform = T.Compose(
# [
# T.Resize((384, 384)),
# T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
# ]
# )
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# depth_model.to(device)
if opt.optim == 'adan':
from optimizer import Adan
# Adan usually requires a larger LR
optimizer = lambda model: Adan(model.get_params(5 * opt.lr), eps=1e-8, weight_decay=2e-5, max_grad_norm=5.0, foreach=False)
else: # adam
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
if opt.backbone == 'vanilla':
warm_up_with_cosine_lr = lambda iter: iter / opt.warm_iters if iter <= opt.warm_iters \
else max(0.5 * ( math.cos((iter - opt.warm_iters) /(opt.iters - opt.warm_iters) * math.pi) + 1),
opt.min_lr / opt.lr)
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, warm_up_with_cosine_lr)
else:
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 1) # fixed
# scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1))
# init guidance
guidance = nn.ModuleDict()
lambda_guidance, guidance_scale = {}, {}
for idx, guidance_type in enumerate(opt.guidance):
lambda_guidance[guidance_type] = opt.lambda_guidance[idx] if idx < len(
opt.lambda_guidance) else opt.lambda_guidance[-1]
guidance_scale[guidance_type] = opt.guidance_scale[idx] if idx < len(
opt.guidance_scale) else opt.guidance_scale[-1]
if guidance_type == 'stable-diffusion':
from nerf.sd import StableDiffusion
guidance['stable-diffusion'] = StableDiffusion(opt.trained_model_path, opt.class_name, device, opt.sd_version, opt.hf_key, step_range=opt.step_range)
elif guidance_type == 'zero123':
from nerf.zero123 import Zero123
guidance['zero123'] = Zero123(device=device, fp16=opt.fp16, config=opt.zero123_config,
ckpt=opt.zero123_ckpt, vram_O=opt.vram_O, t_range=opt.step_range, opt=opt)
elif guidance_type == 'mvdream':
from nerf.mvdream import MVDream
guidance['mvdream'] = MVDream(device,opt.fp16,opt.mvdream_config,vram_O=opt.vram_O, t_range=opt.step_range, opt=opt)
elif guidance_type == 'clip':
from nerf.clip import CLIP
guidance['clip'] = CLIP(device)
else:
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
# dict
opt.lambda_guidance = lambda_guidance
opt.guidance_scale = guidance_scale
ref_imgs = cv2.imread(opt.ref_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] o [H, W, 4]
image_pil = Image.open(opt.ref_path).convert("RGB")
# generated caption
if opt.text == None:
print("load blip2 for image caption...")
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16).to("cuda")
inputs = processor(image_pil, return_tensors="pt").to("cuda", torch.float16)
out = blip_model.generate(**inputs)
caption = processor.batch_decode(out, skip_special_tokens=True)[0].strip()
caption = caption.replace("there is ", "")
caption = caption.replace("close up", "photo")
for d in ["black background", "white background"]:
if d in caption:
caption = caption.replace(d, "ground")
print("Caption: ", caption)
opt.text = caption
with open(os.path.join(opt.workspace, 'setting.txt'), 'w') as f:
f.writelines('------------------ start ------------------' + '\n')
for eachArg, value in optDict.items():
f.writelines(eachArg + ' : ' + str(value) + '\n')
f.writelines('------------------- end -------------------')
# only support alpha photo input.
imgs = cv2.cvtColor(ref_imgs, cv2.COLOR_BGRA2RGBA)
imgs = cv2.resize(imgs, (512, 512), interpolation=cv2.INTER_AREA)
ref_imgs = (torch.from_numpy(imgs)/255.).unsqueeze(0).permute(0, 3, 1, 2).to(device)
# rgb
ori_imgs = ref_imgs[:, :3, :, :] * ref_imgs[:, 3:, :, :] + (1 - ref_imgs[:, 3:, :, :])
mask = imgs[:, :, 3:]
# mask[mask < 0.5 * 255] = 0
# mask[mask >= 0.5 * 255] = 1
kernel = np.ones(((5,5)), np.uint8) ##5
mask = cv2.erode(mask,kernel,iterations=1)
mask = (mask == 0)
# cv2.imwrite('mask/depth_mask.png',mask*255)
mask = (torch.from_numpy(mask)).unsqueeze(0).unsqueeze(0).to(device)
depth_mask = mask
midas_mask = imgs[..., 3] > 0.5
midas_mask = torch.from_numpy(midas_mask).to(device)
# load midas generated depth
depth_path = opt.ref_path.replace('rgba', 'depth')
if os.path.exists(depth_path):
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED) # 800,800
depth = cv2.resize(depth, (512, 512), interpolation=cv2.INTER_AREA)
depth = 1 - torch.from_numpy(depth.astype(np.float32) / 255).to(device)
if len(depth.shape) == 4 and depth.shape[-1] > 1:
depth = depth[..., 0]
print(f'[WARN] dataset: {depth_path} has more than one channel, only use the first channel')
depth = nonzero_normalize_depth(depth, midas_mask) # [128,128],[512,512]
save_tensor2image(depth, os.path.join(opt.workspace, 'depth_resized.jpg'))
# depth = depth[midas_mask]
print(f'[INFO] dataset: load depth prompt {depth_path} {depth.shape}')
else:
depth = None
print(f'[WARN] dataset: {depth_path} is not found')
# # load normal
# normal_path = opt.ref_path.replace('rgba', 'normal')
# if os.path.exists(normal_path):
# normal = cv2.imread(normal_path, cv2.IMREAD_UNCHANGED)
# if normal.shape[-1] == 4:
# normal = cv2.cvtColor(normal, cv2.COLOR_BGRA2RGB)
# normal = cv2.resize(normal, (opt.w, opt.h), interpolation=cv2.INTER_AREA)
# normal = torch.from_numpy(normal.astype(np.float32) / 255).unsqueeze(0).unsqueeze(0).to(device)
# print(f'[INFO] dataset: load normal prompt {normal_path}')
# normal = normal[mask]
# else:
# normal = None
# print(f'[WARN] dataset: {normal_path} is not found')
model = NeRFNetwork(opt)
trainer = Trainer(opt.experiment, opt, model, guidance, depth_model=None,
ref_imgs=ref_imgs, ref_depth=depth,
ref_mask=depth_mask, ori_imgs=ori_imgs,
device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=None, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
if opt.test:
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=33).dataloader()
trainer.test(test_loader, write_video=True)
if opt.save_mesh:
trainer.save_mesh(resolution=256)
else:
if opt.use_mvdream:
opt.batch_size = 4
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader(batch_size = opt.batch_size)
# don't use this
# trainer.default_view_data = train_loader._data.get_default_view_data()
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader(batch_size = 1)
max_epoch = np.ceil(opt.iters / 100).astype(np.int32)
trainer.train(train_loader, valid_loader, max_epoch)
# also test
if opt.final:
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader(batch_size = 1)
trainer.test(test_loader, write_image=False, write_video=True)
if opt.save_mesh:
trainer.save_mesh(resolution=256)
if opt.refine:
mv_loader = NeRFDataset(opt, device=device, type='gen_mv', H=opt.H, W=opt.W, size=33).dataloader(batch_size = 1)
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=64).dataloader(batch_size = 1)
trainer.test(mv_loader, save_path=os.path.join(opt.workspace, 'mvimg'), write_image=True, write_video=False)
if opt.process_mask and not os.path.exists(os.path.join(opt.workspace, 'mask')):
trainer.mask(os.path.basename(opt.workspace))
trainer.refine(os.path.join(opt.workspace, 'mvimg'), opt.refine_iters, test_loader)