-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvec_env_cig.py
289 lines (250 loc) · 9.79 KB
/
vec_env_cig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import numpy as np
from multiprocessing import Process, Pipe
import scipy.misc
import os
from vizdoom import *
import math
from arguments import get_args
args = get_args()
# Processes Doom screen image to produce cropped and resized image.
def process_frame(frame):
s = frame[10:-10,30:-30]
s = scipy.misc.imresize(s,[84,84])
#s = np.reshape(s,[np.prod(s.shape)]) / 255.0
s = [s / 255.0]
return s
def worker(remote, parent_remote, env_fn_wrapper):
parent_remote.close()
env = env_fn_wrapper.x
# prev_agent_health = 0
# prev_agent_ammo = 0
log_file = None
get_bin = lambda x, n: format(x, 'b').zfill(n)
total_reward = 0.0
episode_reward = 0.0
episode_cnt = 0.0
total_episode_cnt = 0
total_kills = 0.0
episode_kills = 0.0
step_cnt = 0
position_history = []
vars = []
episode_events = np.zeros(args.num_events)
def meters_walked(position_history):
meters = 0
last_position = None
for p in position_history:
if last_position is None:
last_position = p
else:
distance = math.sqrt((p[0] - last_position[0]) ** 2 + (p[1] - last_position[1]) ** 2) / 100
if distance > 1:
meters += 1
last_position = p
return meters
def get_vizdoom_vars(vizdoom, position_history):
vars = [meters_walked(position_history), # 0
vizdoom.get_game_variable(GameVariable.HEALTH), # 1
vizdoom.get_game_variable(GameVariable.ARMOR), # 2
vizdoom.get_game_variable(GameVariable.SELECTED_WEAPON_AMMO), # 3
vizdoom.get_game_variable(GameVariable.WEAPON0), # 4
vizdoom.get_game_variable(GameVariable.WEAPON1), # 5
vizdoom.get_game_variable(GameVariable.WEAPON2), # 6
vizdoom.get_game_variable(GameVariable.WEAPON3), # 7
vizdoom.get_game_variable(GameVariable.WEAPON4), # 8
vizdoom.get_game_variable(GameVariable.WEAPON5), # 9
vizdoom.get_game_variable(GameVariable.WEAPON6), # 10
vizdoom.get_game_variable(GameVariable.WEAPON7), # 11
vizdoom.get_game_variable(GameVariable.WEAPON8), # 12
vizdoom.get_game_variable(GameVariable.WEAPON9), # 13
vizdoom.get_game_variable(GameVariable.KILLCOUNT) + vizdoom.get_game_variable(GameVariable.FRAGCOUNT),
# 14
vizdoom.get_game_variable(GameVariable.DEATHCOUNT), # 15
vizdoom.get_game_variable(GameVariable.SELECTED_WEAPON)] # 16
return np.array(vars)
def get_events(vars, last_vars):
events = np.zeros(args.num_events)
if np.count_nonzero(last_vars) == 0:
return events
# If died -> no event
if vars[15] > last_vars[15]:
return events
# 0. Movement
if vars[0] > last_vars[0]:
events[0] = 1
# 1. Health increase
if vars[1] > last_vars[1]:
events[1] = 1
# 2. Armor increase
if vars[2] > last_vars[2]:
events[2] = 1
# 3. Ammo decrease
if vars[3] < last_vars[3]:
events[3] = 1
# 4. Ammo increase
if vars[3] > last_vars[3]:
events[4] = 1
# 5-14. Weapon pickup 0-9
for i in range(4, 14):
if vars[i] > last_vars[i]:
events[i + 1] = 1
# 15-24 Kill increase - for each weapon
if vars[14] > last_vars[14]:
events[15] = 1
for i in range(0, 9):
if vars[16] == i: # If selected weapon
events[16 + i] = 1
return events
while True:
cmd, data = remote.recv()
if data is None:
import random
data = random.randint(0, 2**env.get_available_buttons_size() - 1)
action = [True if i == '1' else False for i in get_bin(data, env.get_available_buttons_size())]
if cmd == 'step':
if len(vars) == 0:
vars = get_vizdoom_vars(env, position_history)
reward = env.make_action(action)
last_vars = vars
pos = [env.get_game_variable(GameVariable.POSITION_X),
env.get_game_variable(GameVariable.POSITION_Y)]
position_history.append(pos)
vars = get_vizdoom_vars(env, position_history)
events = get_events(vars, last_vars)
if not env.is_episode_finished():
ob = process_frame(env.get_state().screen_buffer)
episode_kills = vars[14]
reward = reward / 100.0 # normalizing the reward
episode_reward += reward
step_cnt += 1
done = env.is_episode_finished()
if done:
total_kills += episode_kills
env.new_episode()
position_history = []
vars = get_vizdoom_vars(env, position_history)
ob = process_frame(env.get_state().screen_buffer)
total_reward += episode_reward
episode_cnt += 1
total_episode_cnt += 1
episode_reward = 0.0
remote.send((ob, reward, done, 0.0, events))
elif cmd == 'pos':
pos = [env.get_game_variable(GameVariable.POSITION_X),
env.get_game_variable(GameVariable.POSITION_Y)]
remote.send(pos)
elif cmd == 'gv':
remote.send(vars)
elif cmd == 'log':
if log_file is None:
continue
if episode_cnt == 0.0:
continue
avg_reward = round(total_reward / episode_cnt, 5)
log_file.write(str(step_cnt) + ', ' + str(avg_reward) + '\n')
log_file.flush()
total_reward = 0.0
episode_cnt = 0.0
total_kills = 0.0
elif cmd == 'reset':
env.new_episode()
ob = process_frame(env.get_state().screen_buffer)
remote.send(ob)
elif cmd == 'reset_task':
print ('reset_task: Not implemented')
raise NotImplementedError
elif cmd == 'close':
print ('Terminating doom environment')
if log_file is not None:
log_file.close()
remote.close()
break
elif cmd == 'get_spaces':
remote.send((2**env.get_available_buttons_size(), (1, 84, 84)))
else:
raise NotImplementedError
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x, log_file=""):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
class VecEnv():
def __init__(self, env_fns):
"""
envs: list of vizdoom game environments to run in subprocesses
"""
self.closed = False
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
self.action_space_shape, self.observation_space_shape = self.remotes[0].recv()
def step(self, actions):
cumul_rewards = None
cumul_dones = None
cumul_events = None
for _ in range(4): # Frame skip
for remote, action in zip(self.remotes, actions):
remote.send(('step', action))
results = [remote.recv() for remote in self.remotes]
obs, rews, dones, infos, events = zip(*results)
if cumul_rewards is None:
cumul_rewards = np.stack(rews)
else:
cumul_rewards += np.stack(rews)
if cumul_dones is None:
cumul_dones = np.stack(dones)
else:
cumul_dones |= np.stack(dones)
if cumul_events is None:
cumul_events = events
else:
cumul_events = np.add(cumul_events, events)
return np.stack(obs), cumul_rewards, cumul_dones, infos, cumul_events
def get_game_variables(self, id):
self.remotes[id].send(['gv', None])
return self.remotes[id].recv()
def get_all_game_variables(self):
for remote in self.remotes:
remote.send(('gv', None))
return np.stack([remote.recv() for remote in self.remotes])
def get_position(self):
for remote in self.remotes:
remote.send(('pos', None))
return np.stack([remote.recv() for remote in self.remotes])
def log(self):
for remote in self.remotes:
remote.send(('log', None))
return
def reset(self):
for remote in self.remotes:
remote.send(('reset', None))
return np.stack([remote.recv() for remote in self.remotes])
def reset_task(self):
for remote in self.remotes:
remote.send(('reset_task', None))
return np.stack([remote.recv() for remote in self.remotes])
def close(self):
if self.closed:
return
for remote in self.remotes:
remote.send(('close', None))
for p in self.ps:
p.join()
self.closed = True
@property
def num_envs(self):
return len(self.remotes)