forked from gucorpling/amalgum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_academic.py
227 lines (195 loc) · 8.24 KB
/
get_academic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import urllib.request, bz2, io, os, sys, re, shutil, random
# from dateparser.search import search_dates # This one is worse than datefinder
from collections import OrderedDict
from multiprocessing import cpu_count
from glob import glob
from random import shuffle, seed
import requests
from time import sleep
try:
from BeautifulSoup import BeautifulSoup
except ImportError:
from bs4 import BeautifulSoup
from lib.utils import Document
GENRE_LIMIT = 50000
PASSAGE_LIMIT = 850
PASSAGE_THREASH = 400
seed(42)
script_dir = os.path.dirname(os.path.realpath(__file__)) + os.sep
RAW_PATH = script_dir + os.sep + "data" + os.sep + "academic"
class DocumentWithRaw(Document):
def __init__(self, genre="academic"):
super().__init__(genre)
self.raw_text = ""
def write_file(path, doc):
text = doc.raw_text
title = doc.short_title
PATH = path + os.sep
if os.path.exists(PATH + f"{title}.txt"):
with open(PATH + f"{title}-1.txt", "w", encoding="utf8") as f:
f.write(text)
else:
with open(PATH + f"{title}.txt", "w", encoding="utf8") as f:
f.write(text)
def soup(url):
html = requests.get(url).text
parseed = BeautifulSoup(html)
return parseed
def clean_text(text):
# split the text by sections, randomly select one section
if text.startswith('<div class="html-p"'):
text = text
else:
index = len(re.findall('data-nested="1"', text)) - 1
if index > 0:
index = random.randint(0, index)
sep = re.split(
'<section id=".{1,30}" type=".{1,30}"?><h2 data-nested="1">', text
)[1:]
if len(sep) <= index:
return ""
text = re.split(
'<section id=".{1,30}" type=".{1,30}"?><h2 data-nested="1">', text
)[1:][index]
text = re.sub(
'<a href=(".*?").*?>(.*?)</a>', "<ref target=\g<1>>\g<2></ref>", text
) # href
text = re.sub(
'<a class="html-fig".*?>(.*?)</a>', "<figure>\g<1></figure>", text
) # figure
text = re.sub(" \[<a.*?\]", "", text) # reference
text = re.sub("</?a.*?>", "", text)
text = re.sub("</?su[b|p]>", "", text) # special characters
text = re.sub("<math[\w\W]*?/math>", "", text) # math
text = re.sub("(</?h).*?>", "\g<1>ead>", text) # head
text = re.sub("(</head>)(<head>)", "\g<1>\n\g<2>", text) # head
text = re.sub("</?section.*?>", "", text) # section
text = re.sub('<div class="html-p"><ul class=".*?">', "<list>\n", text) # list head
text = re.sub("</ul></div>", "</list>\n", text) # list tail
text = re.sub('<li><div class="html-p">', "<item>", text) # item head
text = re.sub("</div></li>", "</item>\n", text) # item tail
text = re.sub('</div><div class="html-p">', " </p> \n<p>", text) # paragraph
text = re.sub("</div>(<head>)", " </p> \n\g<1>", text) # paragraph
text = re.sub('<div class="html-p">', "\n<p>\n", text) # paragraph
text = re.sub(
'<span class="html-italic">(.*?)</span>', '<hi rend="italic">\g<1></hi>', text
) # italic
text = re.sub("</?(di|a|m|span|label).*?>", "", text) # clean-up
text = re.sub("\n\n\n+", "\n\n", text) # clean-up
text = re.sub("\n ", "\n", text) # clean-up
text = "<head>" + text
text += " </p>"
# truncate
passage = ""
for p in text.split("</p>")[:-1]:
if passage.count(" ") + p.count(" ") <= PASSAGE_LIMIT:
passage = passage + p + "</p>\n"
else:
break
return passage
def get_texts(url):
count = 0
TEXT_LEN = 0
prev_articles = []
def get_url(def_url, regex, find):
try:
parsed_html = soup(def_url)
except:
sleep(5)
parsed_html = soup(def_url)
def_html = parsed_html.find_all(find[0], find[1])
def_href = re.findall(regex, str(def_html))
def_url = [url + href for href in def_href]
return def_url
# Get full text of an article if it has html format to view
def get_fulltext(subject, article_url):
parsed_html = soup(article_url)
article_html = parsed_html.find(id="html_link")
if article_html:
current_doc = DocumentWithRaw(genre="academic")
parsed_html = soup(article_url + "/htm")
title = re.search(
'<div id="html-article-title">(.*)</div>',
str(parsed_html.find_all(id="html-article-title")),
)
if title:
title = title.group(1)
title = re.sub("</?.*?>", "", title)
current_doc.title = title
# current_doc.subject = subject
current_doc.author = ", ".join(
re.findall(
'<meta content="(.*?)" name=".*?creator"/>', str(parsed_html)
)
)
current_doc.date = re.search(
'<meta content="(.*?)" name=".*?date"/>', str(parsed_html)
).group(1)
# current_doc.publisher = re.search("<meta content=\"(.*?)\" name=\".*?publisher\"/>", str(parsed_html)).group(1)
raw_text = re.search(
'<div class="html-body">\n([\w\W]*)</div>',
str(parsed_html.findAll("div", {"class": "html-body"})),
).group(1)
current_doc.raw_text = BeautifulSoup(raw_text, "lxml").text
current_doc.text = clean_text(raw_text)
if current_doc.text.count(" ") < PASSAGE_THREASH:
return None
current_doc.docnum = count
current_doc.url = article_url + "/htm"
return current_doc
else:
return None
else:
return None
sub_urls = get_url(
url,
'href="(/subject.*)"',
("ul", "side-menu-ul side-menu-ul--padded index-browse-subjects hidden"),
)
subject_search_urls = [
(
"https://www.mdpi.com/search?sort=pubdate&page_no=",
"&subjects=%s&page_count=50" % sub_url.split("/")[-1],
sub_url.split("/")[-1],
)
for sub_url in sub_urls
]
all_docs = []
# Iterate all subjects
for subject_search_url in subject_search_urls:
GENRE_LEN = 0
subject = subject_search_url[2]
subject_url = []
# if subject == "physics-astronomy":
for n in range(1, 51): # The number of search pages
search_page = subject_search_url[0] + str(n) + subject_search_url[1]
searched_urls = get_url(
search_page, 'href="(.*?)"', ("a", "title-link")
) # Get 50 articles in one search page for a subject
subject_url += searched_urls
sys.stderr.write(f"o Finished searching articles for {subject}\n")
# Iterate all articles within one subject
for art_url in subject_url:
if art_url not in prev_articles:
prev_articles.append(art_url)
possible_texts = get_fulltext(subject, art_url) # Get texts
if (
possible_texts is not None
and len(re.findall("[0-9]", possible_texts.text)) <= 40
): # kick out formula-heavy articles
# print(len(re.findall("[0-9]", possible_texts.text))) # the number of numericals in the article
all_docs.append(possible_texts)
GENRE_LEN += possible_texts.text.count(" ")
count += 1
possible_texts.serialize() # write file to out/academic
write_file(RAW_PATH, possible_texts) # write file to data/academic
if GENRE_LEN >= GENRE_LIMIT:
break
TEXT_LEN += GENRE_LEN
sys.stderr.write(f"o Finished the subject {subject} with {GENRE_LEN} tokens.\n")
return TEXT_LEN
if __name__ == "__main__":
url = "https://www.mdpi.com"
sys.stderr.write("o Scraping articles\n")
num_toks = get_texts(url)
sys.stderr.write(f"o Done! Scraped {num_toks} tokens.\n")