generated from karthik/binder-test
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNWLS_Tiger_SECR.R
executable file
·115 lines (89 loc) · 4.41 KB
/
NWLS_Tiger_SECR.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
install.packages(c("camtrapR", "tidyr","raster","secr"))
library(camtrapR)
library(raster)
library(secr)
library(tidyr)
#exiftool is required for reading data from camera trap images
# for more info read https://jniedballa.github.io/camtrapR/
exiftool_dir <- "E:/Software/EXIF"
## Read and plot the shapefile
#Reading the shapefile for the wildlife sanctuary
NWLS<-shapefile('nwls_mask_2024.shp')
plot(NWLS)
## Reading the Camera operation file to create a matrix
NWLS_camop<-read.csv("GPS_2024_utm44.csv")
head(NWLS_camop)
cameraOperation
#creating on-off matrix/trap matrix for camera trap stations to understand effort
NWLS_camop_table<-cameraOperation(NWLS_camop,
stationCol = "station",
setupCol = "Start_Date",
retrievalCol = "end_date",
dateFormat = "%d-%m-%Y",
writecsv= TRUE,
outDir= "H:/NWLS_data_2024/Tiger2024/Output")
head(NWLS_camop_table)
# this command is used for creating a capture matrix for the tigers
# It is not used here as directory 'experiment' which has tiger images cannot
# be shared without permission
{tiger_record_table<-recordTableIndividual(inDir = "experiment",
hasStationFolders = TRUE,
IDfrom = "directory",
camerasIndependent = TRUE,
minDeltaTime = 01,
deltaTimeComparedTo = "lastIndependentRecord",
timeZone = "Asia/Calcutta",
stationCol = "station",
writecsv = TRUE,
outDir = "H:/NWLS_data_2024/Tiger2024/Output")}
# output for the above command is provided to allow analysis i.e capture matrix
tiger_record_table<-read.csv("Output/record_table_individuals1min_deltaT_2024-10-15.csv")
#
# creating a capthist object required for secr
# need trap matrix and capture matrix
tiger_capthist1 <-spatialDetectionHistory(tiger_record_table,
species = "experiment",
output = "binary",
camOp = NWLS_camop_table,
CTtable = NWLS_camop,
stationCol = "station",
Xcol = "Longitude",
Ycol= "Latitude",
individualCol = "Individual",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%d-%m-%Y %H:%M",
occasionLength = 1,
day1 = "station",
includeEffort = TRUE,
timeZone = "Asia/Calcutta"
)
write.csv(tiger_capthist1, "Output/nwls_tiger_capthist.csv")
summary(tiger_capthist1)
plot(tiger_capthist1, tracks = TRUE)
# command to understand how much buffer is required
suggest.buffer(tiger_capthist1)
hist(unlist(moves(tiger_capthist1)))
#creating a habitat Mask
nwls_mask<-make.mask(traps(tiger_capthist1), buffer = 10000, spacing = 1000, type = "trapbuffer", poly = NWLS, poly.habitat = TRUE)
plot(nwls_mask)
##Null Model-
tiger_secr<-secr.fit(tiger_capthist1, mask = nwls_mask)
##detection probablity + heterogenity-
tiger_secr_go_het<-secr.fit(tiger_capthist1, model = g0~h2, mask = nwls_mask)
##movement parameters + heterogenity-
tiger_secr_sig_het<-secr.fit(tiger_capthist1, model = sigma~h2, mask = nwls_mask)
##Combination
tiger_secr_go_sig_het<-secr.fit(tiger_capthist1, model = list(g0~h2, sigma~h2), mask = nwls_mask)
AIC(tiger_secr, tiger_secr_go_het, tiger_secr_sig_het, tiger_secr_go_sig_het)
tiger_secr
tiger_secr_go_het
tiger_secr_sig_het
tiger_secr_go_sig_het
#summary for best fit model
summary(tiger_secr_sig_het)
tiger_secr_sig_het
region.N(tiger_secr_sig_het)
#addtional code
plot(NWLS)
plot(tiger_capthist1, add = T)
plotMCP(tiger_capthist1, add = T)