-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy path0152-Maximum-Product-Subarray.py
41 lines (33 loc) · 1.19 KB
/
0152-Maximum-Product-Subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
'''
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
'''
# Dynamic Programming
class Solution:
def maxProduct(self, nums: List[int]) -> int:
res = max(nums)
curMin = curMax = 1
for num in nums:
temp = curMax * num
curMax = max(temp, num * curMin, num)
curMin = min(temp, num * curMin, num)
res = max(res, curMax, curMin)
return res
# Simlar approach, different steps
class Solution:
def maxProduct(self, nums: List[int]) -> int:
min_prod = max_prod = res = nums[0]
for i in range(1, len(nums)):
if nums[i] < 0:
min_prod, max_prod = max_prod, min_prod
max_prod = nums[i] * max_prod if nums[i] * max_prod > nums[i] else nums[i]
min_prod = nums[i] * min_prod if nums[i] * min_prod < nums[i] else nums[i]
res = max_prod if max_prod > res else res
return res