-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathintercase_encoder.py
331 lines (281 loc) · 8.88 KB
/
intercase_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import csv
import datetime
from datetime import datetime as dt
import json
import time
import encoder
from os.path import isfile
import pandas as pd
import numpy as np
class IntercaseEncoder:
def __init__(self):
self.log = None
def set_log(self, log):
self.log = log
def add_next_state(self, data):
pd.options.mode.chained_assignment = None
data['next_state'] = ''
data['next_time'] = 0
data['next_dur'] = 0
num_rows = len(data)
for i in range(0, num_rows - 1):
if data.at[i, 'case_id'] == data.at[i + 1, 'case_id']:
data.at[i, 'next_state'] = data.at[i + 1, 'activity_name']
data.at[i, 'next_time'] = data.at[i + 1, 'time']
data.at[i, 'next_dur'] = data.at[i + 1, 'time'] - data.at[i, 'time']
else:
data.at[i, 'next_state'] = 99
data.at[i, 'next_time'] = data.at[i, 'time']
data.at[i, 'next_dur'] = 0
data.at[num_rows-1, 'next_state'] = 99
data.at[num_rows-1, 'next_time'] = data.at[num_rows-1, 'time']
data.at[num_rows-1, 'next_dur'] = 0
return data
def get_index_position(self, column_data, unique_data):
converted_values = []
for i in range(0, len(column_data)):
converted_values.append(unique_data.index(column_data[i]))
return converted_values
def create_initial_log(self, data, name):
data = self.add_next_state(data)
data = self.add_query_remaining(data)
return data
def add_query_remaining(self, data):
data['elapsed_time'] = 0
data['total_time'] = 0
data['remaining_time'] = 0
data['history'] = ""
ids = []
total_Times = []
num_rows = len(data)
temp_elapsed = 0
prefix = str(data.at[0, 'activity_name'])
data.at[0, 'history'] = prefix
for i in range(1, num_rows):
if data.at[i, 'case_id'] == data.at[i - 1, 'case_id']:
temp_elapsed += data.at[i - 1, 'next_dur']
data.at[i, 'elapsed_time'] = temp_elapsed
prefix = prefix + '_' + str(data.at[i, 'activity_name'])
data.at[i, 'history'] = prefix
else:
ids.append(data.at[i - 1, 'case_id'])
total_Times.append(temp_elapsed)
temp_elapsed = 0
prefix = str(data.at[i, 'activity_name'])
data.at[i, 'history'] = prefix
ids.append(data.at[num_rows - 1, 'case_id'])
total_Times.append(data.at[num_rows - 1, 'elapsed_time'])
for i in range(0, num_rows):
try:
ind = ids.index(data.at[i, 'case_id'])
total_ = total_Times[ind]
data.at[i, 'total_time'] = total_
data.at[i, 'remaining_time'] = total_ - data.at[i, 'elapsed_time']
except ValueError:
print 'err'
return ValueError
return data
def prepare_data(self, data, columns):
data_encoder = encoder.Encoder()
events = data_encoder.get_events(data)
event_timestamp = pd.DatetimeIndex(data['time'])
event_timestamp = event_timestamp.astype(np.int64)
data['time'] = event_timestamp
data['activity_name'] = self.get_index_position(data['activity_name'].tolist(), events.tolist())
data = data[columns]
return data
def order_csv_time(self, data):
data = data.sort_values(by=['time'], ascending=True)
data = data.reset_index(drop=True)
return data
def get_states(self, data):
state_list = []
for i in range(0, len(data)):
pair = data.at[i, 'activity_name']
try:
ind = state_list.index(pair)
except ValueError:
state_list.append(pair)
return state_list
def get_history_len(self, data):
max_size = -1
for i in range(0, len(data)):
if str(data.at[i, 'history']) != "nan":
parsed = data.at[i, 'history'].split("_")
if len(parsed) > max_size:
max_size = len(parsed)
return max_size
def history_encoding_new(self, data):
hist_len = self.get_history_len(data)
for k in range(0, hist_len):
data['event_' + str(k)] = -1
for i in range(0, len(data)):
if str(data.at[i, 'history']) != "nan":
parsed_hist = str(data.at[i, 'history']).split("_")
for k in range(0, len(parsed_hist)):
data.at[i, 'event_' + str(k)] = int(parsed_hist[k])
return data, hist_len
# level 1 and 2 encoding
def add_queues(self, data, state_list, level=1):
event_queue = []
tuple = []
if level == 1:
data['total_q'] = 0
for s in state_list:
col_name = 'queue' + '_' + str(s)
data[col_name] = 0
event_queue.append(tuple)
tuple = []
num_rows = len(data)
for i in range(0, num_rows):
cur_time = data.at[i, 'time']
next_time = data.at[i, 'next_time']
cur_state = data.at[i, 'activity_name']
ind = state_list.index(cur_state)
tuple = [cur_time, next_time]
event_queue[ind].append(tuple)
self.update_event_queue(event_queue, cur_time)
if level == 1:
total_q = 0
for j, s in enumerate(state_list):
col_name1 = 'queue' + '_' + str(s)
ind = state_list.index(s)
x = self.find_q_len_ttiq(event_queue[ind], cur_time)
data.at[i, col_name1] = x
total_q += x
data.at[i,'total_q'] = total_q
return data
def update_event_queue(self, event_queue, cur_time):
remove_indices = []
rem_ind = []
# going over the different states and getting the rates
for i, e in enumerate(event_queue):
for j, q in enumerate(event_queue[i]):
if q[1] <= cur_time:
rem_ind.append(j)
remove_indices.append(rem_ind)
count_remove = 0
if len(remove_indices[i]) > 0:
for index in sorted(remove_indices[i], reverse=True):
del event_queue[i][index]
rem_ind = []
return
def find_q_len_ttiq(self, event_queue, cur_time):
q_len = len(event_queue)
return q_len
def queue_level(self, data, level=1):
state_list = self.get_states(data)
data = self.add_queues(data, state_list, level)
return data
# level 3
def multiclass(self, data):
data = data.reset_index(drop=True)
pref_list = self.get_prefixes(data)
data = self.add_mc_queues(data, pref_list)
return data
def get_prefixes(self, data):
memorylen = 3
pref_list = []
for i in range(0, len(data)):
hist = data.at[i, 'history']
parsed_hist = str(hist).split("_")
if len(parsed_hist)<=memorylen:
try:
ind = pref_list.index(hist)
except ValueError:
pref_list.append(hist)
else:
#History is too long.
hist = ''
for k in range(0, len(parsed_hist)):
if k > memorylen-1:
break
else:
if hist=='':
hist = hist + str(parsed_hist[len(parsed_hist) - k - 1])
else:
hist = str(parsed_hist[len(parsed_hist) - k - 1])+'_'+ hist
try:
ind = pref_list.index(hist)
except ValueError:
pref_list.append(hist)
return pref_list
def add_mc_queues(self, data, pref_list):
event_queue = []
tuple = []
recent_occur = []
delta = []
print "Number of prefixes is "+str(len(pref_list))
for k,s in enumerate(pref_list):
col_name = 'pref' + '_' + str(k)
data[col_name] = 0
event_queue.append(tuple)
tuple = []
num_rows = len(data)
for i in range(0, num_rows):
# cur_state = r.state.values[0]
cur_time = data.at[i, 'time']
next_time = data.at[i, 'next_time']
#cur_state = df.at[i, 'activity_name']
memorylen= 3
hist = data.at[i, 'history']
parsed_hist = str(hist).split("_")
if len(parsed_hist)>memorylen:
#History is too long.
hist = ''
for k in range(0, len(parsed_hist)):
if k > memorylen-1:
break
else:
if hist=='':
hist = hist + str(parsed_hist[len(parsed_hist) - k - 1])
else:
hist = str(parsed_hist[len(parsed_hist) - k - 1])+'_'+ hist
ind = pref_list.index(hist)
tuple = [cur_time, next_time]
event_queue[ind].append(tuple)
self.update_event_queue(event_queue, cur_time)
for j, s in enumerate(pref_list):
col_name1 = 'pref' + '_' + str(j)
ind = pref_list.index(s)
data.at[i, col_name1] = self.find_mc_q(event_queue[ind], cur_time)
return data
def find_mc_q(self, event_queue, cur_time):
q_len = len(event_queue)
return q_len
# intercase encoding
def intercase_encode(self, data, state_list, query_name, level, other_columns=[]):
cols = other_columns
data, hist_len = self.history_encoding_new(data)
for h in range(0,hist_len):
cols.append('event_'+str(h))
for c in cols:
data[c] = data[c].astype('category')
df_categorical = data[cols]
dummies = pd.get_dummies(df_categorical)
cols = ['elapsed_time',query_name]
if level == 3:
for k,s in enumerate(state_list):
cols.append('pref'+'_'+str(k))
elif level == 2 or level == 1:
for k,s in enumerate(state_list):
cols.append('queue'+'_'+str(k))
data = data[cols]
data = pd.concat([data, dummies], axis=1)
return data
def encode_trace(self, data, level=0, columns=None, name="", other_columns=[]):
columns = ['case_id','time','activity_name'] + other_columns
data = self.prepare_data(data, columns)
data = self.create_initial_log(data, name)
data = self.order_csv_time(data)
state_list = []
query_name = 'remaining_time'
state_list = {}
if level == 3:
data = self.multiclass(data)
state_list = self.get_prefixes(data)
elif level == 2 or level == 1:
data = self.queue_level(data, level)
state_list = self.get_states(data)
self.intercase_encode(data, state_list, query_name, level, other_columns)
return data