-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchaingun.py
324 lines (254 loc) · 9.71 KB
/
chaingun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import hashlib
import json
from time import time
from urllib.parse import urlparse
from uuid import uuid4
import requests
from flask import Flask, jsonify, request
"""
A conceptual blockchain to reinforce gun ownership and tracking of gun sales.
The idea is to have a way to ensure that at every trasaction is tracked and accounted.
The concept of a decentralised blockchain and ledger system to implement this seems quite intuitive.
Gun_id listed here could correspond to the serial id of a gun.
"""
class Chaingun:
def __init__(self):
self.current_transactions = []
self.chain = []
self.nodes = set()
# Create the first block - Let there be light
self.new_block(previous_hash='1', proof=100)
def register_node(self, address):
"""
Add new node to the list of nodes
address: Address of node. Eg. 'http://192.168.0.5:5000'
"""
parsed_url = urlparse(address)
if parsed_url.netloc:
self.nodes.add(parsed_url.netloc)
elif parsed_url.path:
# Accepts an URL without scheme like '192.168.0.5:5000'.
self.nodes.add(parsed_url.path)
else:
raise ValueError('Invalid URL')
def valid_chain(self, chain):
"""
Blockchain validation is done here
chain: A blockchain
return: True if valid, False if not
"""
last_block = chain[0]
current_index = 1
while current_index < len(chain):
block = chain[current_index]
print(f'{last_block}')
print(f'{block}')
print("\n-----------\n")
# Check that the hash of the block is correct
if block['previous_hash'] != self.hash(last_block):
return False
# Check that the Proof of Work is correct
if not self.valid_proof(last_block['proof'], block['proof'], last_block['previous_hash']):
return False
last_block = block
current_index += 1
return True
def resolve_conflicts(self):
"""
This is our network consensus algorithm, it resolves conflicts
by replacing our chain with the longest one in the network.
Our logic here is that the longest chain is the most valid chain.
return: True if our chain was replaced, False if not
"""
neighbours = self.nodes
new_chain = None
# Look only for chains longer than current
max_length = len(self.chain)
# Find and verify the chains from all the nodes in network
for node in neighbours:
response = requests.get(f'http://{node}/chain')
if response.status_code == 200:
length = response.json()['length']
chain = response.json()['chain']
# Check to see if length is longer than current and the chain is valid
if length > max_length and self.valid_chain(chain):
max_length = length
new_chain = chain
# Replace our chain if we discovered a new, valid chain longer than ours
if new_chain:
self.chain = new_chain
return True
return False
def new_block(self, proof, previous_hash):
"""
Create a new block in the blockchain.
We use the hash of the previous block as part of the immutability of the blockchain
proof: The proof given by the proof of work algorithm
previous_hash: Hash of previous block
return: New Block
"""
block = {
'index': len(self.chain) + 1,
'timestamp': time(),
'transactions': self.current_transactions,
'proof': proof,
'previous_hash': previous_hash or self.hash(self.chain[-1]),
}
# Reset the current list of transactions
self.current_transactions = []
self.chain.append(block)
return block
def new_transaction(self, owner, receiver, amount, gun_id):
"""
Creates a new transaction thats queued for the next mined Block
owner: ID of the current gun owner
receiver: ID of the buyer
amount: Amount paid in the transaction
gun_id: Unique gun id for the gun that's being transacted
return: The index of the Block that will hold this transaction
"""
self.current_transactions.append({
'owner': owner,
'receiver': receiver,
'amount': amount,
'gun_id':gun_id
})
"""
You can include a validation function here <optional>.
The goal of such a function would be to check against a database to see if it's a valid gun serial ID.
"""
return self.last_block['index'] + 1
@property
def last_block(self):
return self.chain[-1]
@staticmethod
def hash(block):
"""
Every block in the network needs a signature -> Reinforces uniqueness and immutability
We can do that by hashing our block dictionary with SHA-256 hash.
Creates a SHA-256 hash of a Block
block: block dictionary
return: hashed string
"""
"""
The entire dictionary will be hashed.
We must make sure that the information in the Dictionary is ordered,
or we'll have inconsistent hashes across different transactions.
"""
block_string = json.dumps(block, sort_keys=True).encode()
return hashlib.sha256(block_string).hexdigest()
def proof_of_work(self, last_block):
"""
Simple Proof of Work Algorithm:
- Find a number p' such that hash(pp') contains leading 4 zeroes
- Where p is the previous proof, and p' is the new proof
last_block: last Block
return: proof as an integer number
"""
last_proof = last_block['proof']
last_hash = self.hash(last_block)
proof = 0
while self.valid_proof(last_proof, proof, last_hash) is False:
proof += 1
return proof
@staticmethod
def valid_proof(last_proof, proof, last_hash):
"""
Validates the Proof
last_proof: Previous Proof
proof: Current Proof
last_hash: The hash of the Previous Block
return: True if correct, False if not.
"""
guess = f'{last_proof}{proof}{last_hash}'.encode()
guess_hash = hashlib.sha256(guess).hexdigest()
return guess_hash[:4] == "0000"
# Instantiate the Node
app = Flask(__name__)
# Generate a globally unique address for this node
node_identifier = str(uuid4()).replace('-', '')
# Instantiate the Blockchain
blockchain = Chaingun()
@app.route('/mine', methods=['GET'])
def mine():
# We run the proof of work algorithm to get the next proof...
last_block = blockchain.last_block
proof = blockchain.proof_of_work(last_block)
# We must receive a reward for finding the proof.
# The sender is "0" to signify that this node has mined a new coin.
# Reward transactions have gun_id as 0 to distinguish them.
blockchain.new_transaction(
owner="0",
receiver=node_identifier,
amount=1,
gun_id=0
)
# Forge the new Block by adding it to the chain
previous_hash = blockchain.hash(last_block)
block = blockchain.new_block(proof, previous_hash)
response = {
'message': "New Block Forged",
'index': block['index'],
'transactions': block['transactions'],
'proof': block['proof'],
'previous_hash': block['previous_hash'],
}
return jsonify(response), 200
@app.route('/transactions/new', methods=['POST'])
def new_transaction():
values = request.get_json()
# Check that the required fields are in the POST'ed data
required = ['owner', 'receiver', 'amount', 'gun_id']
if not all(k in values for k in required):
return 'Missing values', 400
# Create a new Transaction
index = blockchain.new_transaction(values['owner'], values['receiver'], values['amount'], values['gun_id'])
response = {'message': f'Transaction in queue to be added to Block {index}. Hit mine to record the transaction'}
return jsonify(response), 201
@app.route('/chain', methods=['GET'])
def full_chain():
response = {
'chain': blockchain.chain,
'length': len(blockchain.chain),
}
return jsonify(response), 200
@app.route('/nodes/register', methods=['POST'])
def register_nodes():
values = request.get_json()
nodes = values.get('nodes')
if nodes is None:
return "Error: Please supply a valid list of nodes", 400
for node in nodes:
blockchain.register_node(node)
response = {
'message': 'New nodes have been added',
'total_nodes': list(blockchain.nodes),
}
return jsonify(response), 201
@app.route('/nodes/resolve', methods=['GET'])
def consensus():
replaced = blockchain.resolve_conflicts()
# If replaced display message
if replaced:
response = {
'message': 'Current chain was replaced',
'new_chain': blockchain.chain
}
# Else maintain authority of current chain
else:
response = {
'message': 'Current chain is authoritative',
'chain': blockchain.chain
}
return jsonify(response), 200
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
"""
Change the port number in the parameter: default - to fire up different nodes in the same system.
The default port number is 5000
"""
parser.add_argument('-p', '--port', default=5000, type=int, help='port to listen on')
args = parser.parse_args()
port = args.port
app.run(host='0.0.0.0', port=port)