forked from navneeth594/Emotion_Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnight_vision.py
71 lines (42 loc) · 1.27 KB
/
night_vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import sys
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import cv2
import skimage.io
import io
from scipy.misc import imsave
from skimage import data, img_as_float
from skimage import exposure
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
video_capture = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
#print(type(frame))
cv2.imwrite('image.jpg', frame)
img = data.imread('image.jpg')
#print(type(img))
#imsave('img.jpg',img)
frame1 = exposure.equalize_hist(frame)
imsave('test2.jpg',frame1)
img1=cv2.imread('test2.jpg')
faces = faceCascade.detectMultiScale(
img1,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
#flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
#cv2.rectangle(img1, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.rectangle(img1, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Display the resulting frame
cv2.imshow('Video', img1)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()