-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnanotime.h
858 lines (773 loc) · 25.4 KB
/
nanotime.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
#ifndef _include_guard_nanotime_
#define _include_guard_nanotime_
/*
* You can choose this license, if possible in your jurisdiction:
*
* Unlicense
*
* This is free and unencumbered software released into the public domain.
*
* Anyone is free to copy, modify, publish, use, compile, sell, or distribute
* this software, either in source code form or as a compiled binary, for any
* purpose, commercial or non-commercial, and by any means.
*
* In jurisdictions that recognize copyright laws, the author or authors of
* this software dedicate any and all copyright interest in the software to the
* public domain. We make this dedication for the benefit of the public at
* large and to the detriment of our heirs and successors. We intend this
* dedication to be an overt act of relinquishment in perpetuity of all present
* and future rights to this software under copyright law.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* For more information, please refer to <http://unlicense.org/>
*
*
* Alternative license choice, if works can't be directly submitted to the
* public domain in your jurisdiction:
*
* The MIT License (MIT)
*
* Copyright (C) 2022 Brandon McGriff <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#if defined(_MSC_VER)
#if (_MSC_VER < 1600)
#error "Current Visual Studio version is not at least Visual Studio 2010, the nanotime library requires at least 2010."
#endif
#elif defined(__cplusplus)
#if (__cplusplus < 201103L)
#error "Current C++ standard is not at least C++11, the nanotime library requires at least C++11."
#endif
#elif defined(__STDC_VERSION__)
#if (__STDC_VERSION__ < 199901L)
#error "Current C standard is not at least C99, the nanotime library requires at least C99."
#endif
#else
#error "Current C or C++ standard is unknown, the nanotime library requires stdint.h and stdbool.h to be available (C99 or higher, C++11 or higher, Visual Studio 2010 or higher)."
#endif
#ifdef __cplusplus
extern "C" {
#endif
/*
* Implementor's note: This library directly uses Win32 APIs both for MSVC and
* MinGW GCC, as they work for both, and produce better behavior in MinGW
* builds. Detection of them is accomplished via checking if _WIN32 is defined,
* as it's defined in both MSVC and MinGW GCC. Though it's convenient to have
* UNIX-like APIs on Windows provided by MinGW, they just aren't as good as
* directly using Win32 APIs on Windows.
*/
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>
#define NANOTIME_NSEC_PER_SEC UINT64_C(1000000000)
#ifndef NANOTIME_ONLY_STEP
/*
* Returns the current time since some unspecified epoch. With the exception of
* the standard C11 implementation and non-Apple/Mach kernel POSIX
* implementation when neither CLOCK_MONOTONIC_RAW nor CLOCK_MONOTONIC are
* available, the time values monotonically increase, so they're not equivalent
* to calendar time (i.e., no leap seconds are accounted for, etc.). Calendar
* time has to be used as a last resort sometimes, as monotonic time isn't
* always available.
*/
uint64_t nanotime_now();
/*
* Returns the maximum possible timestamp value. Use of this value is required
* to properly handle overflow of timestamp values, such as when calculating the
* interval between a time value before overflow and the next time value after
* overflow.
*/
uint64_t nanotime_now_max();
/*
* Sleeps the current thread for the requested count of nanoseconds. The slept
* duration may be less than, equal to, or greater than the time requested.
*/
void nanotime_sleep(uint64_t nsec_count);
/*
* Yield the CPU/core that called nanotime_yield to the operating system for a
* small time slice.
*/
void nanotime_yield();
#endif
/*
* Calculates the time interval between two nanosecond time values, correctly
* handling the case when the end time value overflows past max. You should
* probably use this function when calculating time intervals, as not all
* platforms' maximum timestamp value is UINT64_MAX, which is required for the
* trivial "end - start" formula for interval calculation to work as expected.
*/
uint64_t nanotime_interval(const uint64_t start, const uint64_t end, const uint64_t max);
typedef struct nanotime_step_data {
uint64_t sleep_duration;
uint64_t now_max;
uint64_t (* now)();
void (* sleep)(uint64_t nsec_count);
uint64_t zero_sleep_duration;
uint64_t accumulator;
uint64_t sleep_point;
} nanotime_step_data;
/*
* Initializes the nanotime precise fixed timestep object. Call immediately
* before entering the loop using the stepper object.
*/
void nanotime_step_init(
nanotime_step_data* const stepper,
const uint64_t sleep_duration,
const uint64_t now_max,
uint64_t (* const now)(),
void (* const sleep)(uint64_t nsec_count)
);
/*
* Does one step of sleeping for a fixed timestep logic update cycle. It makes
* a best-attempt at a precise delay per iteration, but might skip a cycle of
* sleeping if skipping sleeps is required to catch up to the correct
* wall-clock time. Returns true if a sleep up to the latest target sleep end
* time occurred, otherwise returns false in the case of a sleep step skip.
*/
bool nanotime_step(nanotime_step_data* const stepper);
#if !defined(NANOTIME_ONLY_STEP) && defined(NANOTIME_IMPLEMENTATION)
/*
* Non-portable, platform-specific implementations are first. If none of them
* match the current platform, the standard C/C++ versions are used as a last
* resort.
*/
/*
* Checking _WIN32 must be above the UNIX-like implementations, so MinGW is
* guaranteed to use it.
*/
#ifdef _WIN32
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <Windows.h>
#ifndef NANOTIME_NOW_IMPLEMENTED
uint64_t nanotime_now() {
static uint64_t scale = UINT64_C(0);
static bool multiply;
if (scale == 0u) {
LARGE_INTEGER frequency;
QueryPerformanceFrequency(&frequency);
if (frequency.QuadPart < NANOTIME_NSEC_PER_SEC) {
scale = NANOTIME_NSEC_PER_SEC / frequency.QuadPart;
multiply = true;
}
else {
scale = frequency.QuadPart / NANOTIME_NSEC_PER_SEC;
multiply = false;
}
}
LARGE_INTEGER performanceCount;
QueryPerformanceCounter(&performanceCount);
if (multiply) {
return performanceCount.QuadPart * scale;
}
else {
return performanceCount.QuadPart / scale;
}
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#ifndef NANOTIME_NOW_MAX_IMPLEMENTED
uint64_t nanotime_now_max() {
static uint64_t now_max;
if (now_max == UINT64_C(0)) {
LARGE_INTEGER frequency;
QueryPerformanceFrequency(&frequency);
if (frequency.QuadPart < NANOTIME_NSEC_PER_SEC) {
now_max = UINT64_MAX * (NANOTIME_NSEC_PER_SEC / frequency.QuadPart);
}
else {
now_max = UINT64_MAX / (frequency.QuadPart / NANOTIME_NSEC_PER_SEC);
}
}
return now_max;
}
#define NANOTIME_NOW_MAX_IMPLEMENTED
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
void nanotime_sleep(uint64_t nsec_count) {
LARGE_INTEGER dueTime;
if (nsec_count < UINT64_C(100)) {
/*
* Allows the OS to schedule another process for a single time
* slice. Better than a delay of 0, which immediately returns
* with no actual non-CPU-hogging delay. The time-slice-yield
* behavior is specified in Microsoft's Windows documentation.
*/
SleepEx(0UL, FALSE);
}
else {
HANDLE timer = NULL;
if (
#ifdef CREATE_WAITABLE_TIMER_HIGH_RESOLUTION
/*
* Requesting a high resolution timer can make quite the
* difference, so always request high resolution if available. It's
* available in Windows 10 1803 and above. This arrangement of
* building it if the build system supports it will allow the
* executable to use high resolution if available on a user's
* system, but revert to low resolution if the user's system
* doesn't support high resolution.
*/
(timer = CreateWaitableTimerEx(NULL, NULL, CREATE_WAITABLE_TIMER_HIGH_RESOLUTION, TIMER_ALL_ACCESS)) == NULL &&
#endif
(timer = CreateWaitableTimer(NULL, TRUE, NULL)) == NULL
) {
return;
}
dueTime.QuadPart = -(LONGLONG)(nsec_count / UINT64_C(100));
SetWaitableTimer(timer, &dueTime, 0L, NULL, NULL, FALSE);
WaitForSingleObject(timer, INFINITE);
CloseHandle(timer);
}
}
#define NANOTIME_SLEEP_IMPLEMENTED
#endif
#ifndef NANOTIME_YIELD_IMPLEMENTED
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <Windows.h>
void nanotime_yield() {
YieldProcessor();
}
#define NANOTIME_YIELD_IMPLEMENTED
#endif
#endif
/*
* To avoid using standard UNIX APIs on UNIX-like platforms, the
* platform-specific implementations must be first. That way, the
* lower-overhead kernel APIs can be used, that aren't UNIX-like.
*/
#ifndef NANOTIME_NOW_IMPLEMENTED
#if defined(__APPLE__) || defined(__MACH__)
/*
* The current platform is some Apple operating system, or at least uses some
* Mach kernel. The POSIX implementation below using clock_gettime works on at
* least Apple platforms, though this version using Mach functions has lower
* overhead.
*/
#include <mach/mach_time.h>
uint64_t nanotime_now() {
static mach_timebase_info_data_t info = { 0 };
if (info.denom == UINT32_C(0)) {
const kern_return_t status = mach_timebase_info(&info);
assert(status == KERN_SUCCESS);
if (status != KERN_SUCCESS) {
return UINT64_C(0);
}
}
return (mach_absolute_time() * info.numer) / info.denom;
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_NOW_MAX_IMPLEMENTED
#if defined(__APPLE__) || defined(__MACH__)
#include <mach/mach_time.h>
uint64_t nanotime_now_max() {
static uint64_t now_max = UINT64_C(0);
if (now_max == UINT64_C(0)) {
mach_timebase_info_data_t info;
const kern_return_t status = mach_timebase_info(&info);
assert(status == KERN_SUCCESS);
if (status != KERN_SUCCESS) {
return UINT64_C(0);
}
else {
now_max = UINT64_MAX / info.denom;
}
}
return now_max;
}
#define NANOTIME_NOW_MAX_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_NOW_IMPLEMENTED
#if defined(__unix__) && defined(_POSIX_VERSION) && (_POSIX_VERSION >= 199309L) && !defined(NANOTIME_NOW_IMPLEMENTED)
/*
* Current platform is some version of POSIX, that might have clock_gettime.
*/
#include <unistd.h>
#include <time.h>
#include <errno.h>
uint64_t nanotime_now() {
struct timespec now;
const int status = clock_gettime(
#if defined(CLOCK_MONOTONIC_RAW)
/*
* Monotonic raw is more precise, but not always available. For
* the sorts of applications this code is intended for, mainly
* soft real time applications such as game programming, the
* subtle inconsistencies of it vs. monotonic aren't an issue.
*/
CLOCK_MONOTONIC_RAW
#elif defined(CLOCK_MONOTONIC)
/*
* Monotonic is quite good, and widely available, but not as
* precise as monotonic raw, so it's only used if required.
*/
CLOCK_MONOTONIC
#else
/*
* Realtime isn't fully correct, as it's calendar time, but is
* even more widely available than monotonic. Monotonic is only
* unavailable on very old platforms though, so old they're
* likely unused now (as of last editing this, 2023).
*/
CLOCK_REALTIME
#endif
, &now);
assert(status == 0 || (status == -1 && errno != EOVERFLOW));
if (status == 0 || (status == -1 && errno != EOVERFLOW)) {
return (uint64_t)now.tv_sec * NANOTIME_NSEC_PER_SEC + (uint64_t)now.tv_nsec;
}
else {
return UINT64_C(0);
}
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(__MINGW32__) || defined(__MINGW64__)
#include <unistd.h>
#include <time.h>
#include <errno.h>
void nanotime_sleep(uint64_t nsec_count) {
const struct timespec req = {
.tv_sec = (time_t)(nsec_count / NANOTIME_NSEC_PER_SEC),
.tv_nsec = (long)(nsec_count % NANOTIME_NSEC_PER_SEC)
};
#ifndef NDEBUG
const int status =
#endif
nanosleep(&req, NULL);
assert(status == 0 || (status == -1 && errno != EINVAL));
}
#define NANOTIME_SLEEP_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_YIELD_IMPLEMENTED
#if (defined(__unix__) || defined(__APPLE__)) && defined(_POSIX_VERSION) && (_POSIX_VERSION >= 200112L)
#include <sched.h>
void nanotime_yield() {
(void)sched_yield();
}
#define NANOTIME_YIELD_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_NOW_IMPLEMENTED
#if defined(__vita__)
#include <psp2/kernel/processmgr.h>
uint64_t nanotime_now() {
return sceKernelGetProcessTimeWide() * UINT64_C(1000);
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
#if defined(__vita__)
#include <psp2/kernel/processmgr.h>
void nanotime_sleep(uint64_t nsec_count) {
sceKernelDelayThreadCB(nsec_count / UINT64_C(1000));
}
#define NANOTIME_SLEEP_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
/*
* NOTE: You *must* have asyncify enabled in the Emscripten build (pass
* -sASYNCIFY to the compiler/linker) or sleeping won't work.
*/
void nanotime_sleep(uint64_t nsec_count) {
emscripten_sleep(nsec_count / UINT64_C(1000000));
}
#define NANOTIME_SLEEP_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_NOW_IMPLEMENTED
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
uint64_t nanotime_now() {
const double now = emscripten_get_now();
return (uint64_t)now * UINT64_C(1000000);
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
#ifdef __SWITCH__
#include <switch.h>
void nanotime_sleep(uint64_t nsec_count) {
if (nsec_count > INT64_MAX) {
svcSleepThread(INT64_MAX);
}
else {
svcSleepThread((s64)nsec_count);
}
}
#define NANOTIME_SLEEP_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_NOW_IMPLEMENTED
#ifdef __SWITCH__
#include <switch.h>
uint64_t nanotime_now() {
return armTicksToNs(armGetSystemTick());
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_YIELD_IMPLEMENTED
#if defined(__SWITCH__)
#include <switch.h>
void nanotime_yield() {
svcSleepThread(YieldType_ToAnyThread);
}
#define NANOTIME_YIELD_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_NOW_IMPLEMENTED
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
#include <time.h>
uint64_t nanotime_now() {
struct timespec now;
const int status = timespec_get(&now, TIME_UTC);
assert(status == TIME_UTC);
if (status == TIME_UTC) {
return (uint64_t)now.tv_sec * NANOTIME_NSEC_PER_SEC + (uint64_t)now.tv_nsec;
}
else {
return UINT64_C(0);
}
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_THREADS__)
#include <threads.h>
void nanotime_sleep(uint64_t nsec_count) {
const struct timespec req = {
.tv_sec = (time_t)(nsec_count / NANOTIME_NSEC_PER_SEC),
.tv_nsec = (long)(nsec_count % NANOTIME_NSEC_PER_SEC)
};
const int status = thrd_sleep(&req, NULL);
assert(status == 0 || status == -1);
}
#define NANOTIME_SLEEP_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_YIELD_IMPLEMENTED
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_THREADS__)
#include <threads.h>
void nanotime_yield() {
thrd_yield();
}
#define NANOTIME_YIELD_IMPLEMENTED
#endif
#endif
#ifdef __cplusplus
}
#endif
/*
* C++ implementations follow here, but defined with C linkage.
*/
#ifndef NANOTIME_NOW_IMPLEMENTED
#ifdef __cplusplus
#include <cstdint>
#include <chrono>
extern "C" uint64_t nanotime_now() {
return static_cast<uint64_t>(
std::chrono::time_point_cast<std::chrono::nanoseconds>(
std::chrono::steady_clock::now()
).time_since_epoch().count()
);
}
#define NANOTIME_NOW_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
#ifdef __cplusplus
#include <cstdint>
#include <thread>
#include <exception>
extern "C" void nanotime_sleep(uint64_t nsec_count) {
try {
std::this_thread::sleep_for(std::chrono::nanoseconds(nsec_count));
}
catch (std::exception e) {
}
}
#define NANOTIME_SLEEP_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_YIELD_IMPLEMENTED
#ifdef __cplusplus
#include <thread>
extern "C" void nanotime_yield() {
std::this_thread::yield();
}
#define NANOTIME_YIELD_IMPLEMENTED
#endif
#endif
#ifndef NANOTIME_NOW_IMPLEMENTED
#error "Failed to implement nanotime_now (try using C11 with C11 threads support or C++11)."
#endif
#ifndef NANOTIME_SLEEP_IMPLEMENTED
#error "Failed to implement nanotime_sleep (try using C11 with C11 threads support or C++11)."
#endif
#ifndef NANOTIME_YIELD_IMPLEMENTED
#ifdef __cplusplus
extern "C" {
#endif
/*
* As a last resort, make a zero-duration sleep request to implement yield.
* Such sleep requests often have the desired yielding behavior on many
* platforms.
*/
void nanotime_yield() {
nanotime_sleep(0u);
}
#define NANOTIME_YIELD_IMPLEMENTED
#ifdef __cplusplus
}
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifndef NANOTIME_NOW_MAX_IMPLEMENTED
/*
* Might not be correct on some platforms, but it's the best we can do as a last
* resort.
*/
uint64_t nanotime_now_max() {
return UINT64_MAX;
}
#define NANOTIME_NOW_MAX_IMPLEMENTED
#endif
#endif
#ifdef NANOTIME_IMPLEMENTATION
uint64_t nanotime_interval(const uint64_t start, const uint64_t end, const uint64_t max) {
assert(max > UINT64_C(0));
assert(start <= max);
assert(end <= max);
if (end >= start) {
return end - start;
}
else {
return end + (max - start) + UINT64_C(1);
}
}
void nanotime_step_init(
nanotime_step_data* const stepper,
const uint64_t sleep_duration,
const uint64_t now_max,
uint64_t (* const now)(),
void (* const sleep)(uint64_t nsec_count)
) {
assert(stepper != NULL);
assert(sleep_duration > UINT64_C(0));
assert(now_max > UINT64_C(0));
assert(now != NULL);
assert(sleep != NULL);
stepper->sleep_duration = sleep_duration;
stepper->now_max = now_max;
stepper->now = now;
stepper->sleep = sleep;
const uint64_t start = now();
sleep(UINT64_C(0));
stepper->zero_sleep_duration = nanotime_interval(start, now(), now_max);
stepper->accumulator = UINT64_C(0);
/*
* This should be last here, so the sleep point is close to what it
* should be.
*/
stepper->sleep_point = now();
}
bool nanotime_step(nanotime_step_data* const stepper) {
assert(stepper != NULL);
const uint64_t start_point = stepper->now();
if (nanotime_interval(stepper->sleep_point, start_point, stepper->now_max) >= stepper->sleep_duration + NANOTIME_NSEC_PER_SEC / UINT64_C(10)) {
stepper->sleep_point = start_point;
stepper->accumulator = UINT64_C(0);
}
bool slept;
if (stepper->accumulator < stepper->sleep_duration) {
const uint64_t total_sleep_duration = stepper->sleep_duration - stepper->accumulator;
uint64_t current_sleep_duration = total_sleep_duration;
const uint64_t shift = UINT64_C(4);
/*
* The algorithm implemented here takes the assumption that a
* sequence of repeated sleep requests of the same requested
* duration end up being approximately of equal actual sleep
* duration, even if they're all well above the requested
* duration. In practice, such an assumption proves out to be
* true on various platforms.
*/
/*
* A big initial sleep lowers power usage on any platform, as
* more small sleep requests use more power than fewer bigger,
* equivalent sleep requests. In practice, operating systems
* "actually sleep" when 1ms or more is requested, and 1ms is
* the minimum request duration you can make on some platforms
* (like older versions of Windows). Additionally, power usage
* is nice and low when doing the number of 1ms sleeps that's
* (hopefully) short of the target duration.
*
* But, the loop here maintains a maximum of the actual slept
* durations, breaking out when the time remaining is greater
* than or equal to the maximum found. By breaking out on the
* maximum found rather than just 1ms-or-less remaining,
* sleeping beyond the target deadline is reduced.
*/
{
uint64_t max = NANOTIME_NSEC_PER_SEC / UINT64_C(1000);
uint64_t start = stepper->now();
while (nanotime_interval(stepper->sleep_point, start, stepper->now_max) + max < total_sleep_duration) {
stepper->sleep(NANOTIME_NSEC_PER_SEC / UINT64_C(1000));
const uint64_t next = stepper->now();
const uint64_t current_interval = nanotime_interval(start, next, stepper->now_max);
if (current_interval > max) {
max = current_interval;
}
start = next;
}
const uint64_t initial_duration = nanotime_interval(start_point, stepper->now(), stepper->now_max);
if (initial_duration < current_sleep_duration) {
current_sleep_duration -= initial_duration;
}
else {
goto step_end;
}
}
/*
* This has the flavor of Zeno's dichotomous paradox of motion,
* as it successively divides the time remaining to sleep, but
* attempts to stop short of the deadline to hopefully be able
* to precisely sleep up to the deadline below this loop. The
* divisor is larger than two though, as it produces better
* behavior, and seems to work fine in testing on real
* hardware. The same method of keeping track of the max
* duration per loop of same sleep request durations above is
* used here. The overshoot possible in the loop below this one
* won't overshoot much, or in the best case won't overshoot,
* so the busyloop can finish up the sleep precisely.
*/
current_sleep_duration >>= shift;
for (
uint64_t max = stepper->zero_sleep_duration;
nanotime_interval(stepper->sleep_point, stepper->now(), stepper->now_max) + max < total_sleep_duration && current_sleep_duration > UINT64_C(0);
current_sleep_duration >>= shift
) {
max = stepper->zero_sleep_duration;
uint64_t start;
while (max < stepper->sleep_duration && nanotime_interval(stepper->sleep_point, start = stepper->now(), stepper->now_max) + max < total_sleep_duration) {
stepper->sleep(current_sleep_duration);
uint64_t slept_duration;
if ((slept_duration = nanotime_interval(start, stepper->now(), stepper->now_max)) > max) {
max = slept_duration;
}
}
}
if (nanotime_interval(stepper->sleep_point, stepper->now(), stepper->now_max) >= total_sleep_duration) {
goto step_end;
}
{
/*
* After (hopefully) stopping short of the deadline by
* a small amount, do small sleeps here to get closer
* to the deadline, but again attempting to stop short
* by an even smaller amount. It's best to do larger
* sleeps as done in the above loops, to reduce
* CPU/power usage, as each sleep iteration has a
* more-or-less fixed overhead of CPU/power usage.
*
* In testing on an M1 Mac mini running macOS, power
* usage is lower using zero-duration sleeps vs.
* nanotime_yield(), with no loss of timing precision.
* The same might be true for other hardwares/operating
* systems.
*/
uint64_t max = stepper->zero_sleep_duration;
uint64_t start;
while (nanotime_interval(stepper->sleep_point, start = stepper->now(), stepper->now_max) + max < total_sleep_duration) {
stepper->sleep(UINT64_C(0));
if ((stepper->zero_sleep_duration = nanotime_interval(start, stepper->now(), stepper->now_max)) > max) {
max = stepper->zero_sleep_duration;
}
}
}
step_end:
{
/*
* Finally, do a busyloop to precisely sleep up to the
* deadline. The code above this loop attempts to
* reduce the remaining time to sleep to a minimum via
* process-yielding sleeps, so the amount of time spent
* spinning here is hopefully quite low.
*
* In testing on an M1 Mac mini running macOS,
* busylooping here produces the absolute greatest
* precision possible on the hardware, down to the
* sub-10ns-off-per-update range for longish stretches
* during 60 Hz updates, but in the
* hundreds-to-thousands of nanoseconds off when using
* nanotime_yield() or zero-duration sleeps. And,
* because the sleeping algorithm above does such a
* good job of stopping very close to the deadline,
* busylooping here has basically negligible difference
* in power usage vs. yields/zero-duration sleeps.
*/
uint64_t current_time;
uint64_t accumulated;
while ((accumulated = nanotime_interval(stepper->sleep_point, current_time = stepper->now(), stepper->now_max)) < total_sleep_duration);
stepper->accumulator += accumulated;
stepper->sleep_point = current_time;
slept = true;
}
}
else {
slept = false;
}
stepper->accumulator -= stepper->sleep_duration;
return slept;
}
#endif
#ifdef __cplusplus
}
#endif
#endif /* _include_guard_nanotime_ */