-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
139 lines (117 loc) · 5.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import sys
import argparse
import random
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data
import torchvision.transforms as transforms
from torch.autograd import Variable
import utils
from utils import *
import data_utils as d_utils
from dataset import *
# from Encoder import Decoder
from Encoder1024 import Decoder
from D_net import D_net
# import shapenet_part_loader
# from dataset import *
# from io_util import read_pcd, save_pcd
torch.backends.cudnn.enabled = False
parser = argparse.ArgumentParser()
#parser.add_argument('--dataset', default='ModelNet40', help='ModelNet10|ModelNet40|ShapeNet')
parser.add_argument('--dataroot', default='dataset/train', help='path to dataset')
parser.add_argument('--workers', type=int,default=2, help='number of data loading workers')
parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
parser.add_argument('--pnum', type=int, default=2048, help='the point number of a sample')
parser.add_argument('--crop_point_num',type=int,default=1024,help='0 means do not use else use with this weight')
parser.add_argument('--nc', type=int, default=3)
parser.add_argument('--niter', type=int, default=300, help='number of epochs to train for')
parser.add_argument('--weight_decay', type=float, default=0.001)
parser.add_argument('--learning_rate', default=0.0002, type=float, help='learning rate in training')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9')
parser.add_argument('--cuda', type = bool, default = False, help='enables cuda')
parser.add_argument('--ngpu', type=int, default=2, help='number of GPUs to use')
parser.add_argument('--netG', default='Trained_Model/gen_net_Table_Attention7.pth', help="")
parser.add_argument('--netD', default='Trained_Model/dis_net_Table_Attention7.pth', help="")
parser.add_argument('--infile',type = str, default = 'test_files/crop12.csv')
parser.add_argument('--infile_real',type = str, default = 'test_files/real11.csv')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('--drop',type=float,default=0.2)
parser.add_argument('--num_scales',type=int,default=3,help='number of scales')
# Set the first parameter of '--point_scales_list' equal to (point_number + 512).
parser.add_argument('--point_scales_list',type=list,default=[2048,1024],help='number of points in each scales')
parser.add_argument('--each_scales_size',type=int,default=1,help='each scales size')
parser.add_argument('--wtl2',type=float,default=0.9,help='0 means do not use else use with this weight')
parser.add_argument('--cropmethod', default = 'random_center', help = 'random|center|random_center')
parser.add_argument('--cloud_size',type=int,default=1024,help='0 means do not use else use with this weight')
opt = parser.parse_args()
print(opt)
def distance_squre1(p1,p2):
return (p1[0]-p2[0])**2+(p1[1]-p2[1])**2+(p1[2]-p2[2])**2
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
test_set = ShapeNet(train=False, npoints=opt.cloud_size, np_prior=opt.pnum)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=opt.batchSize, shuffle=False, num_workers=int(opt.workers))
gen_net = Decoder(opt.point_scales_list[0], opt.crop_point_num)
dis_net = D_net(opt.crop_point_num)
# dis_net = D_net(4, opt.crop_point_num)
USE_CUDA = True
criterion_PointLoss = PointLoss_test().to(device)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv2d") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("Conv1d") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm1d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
# initialize generator and discriminator weights and device
if USE_CUDA:
print("Using", torch.cuda.device_count(), "GPUs")
gen_net = torch.nn.DataParallel(gen_net)
gen_net.to(device)
gen_net.apply(weights_init_normal)
dis_net = torch.nn.DataParallel(dis_net)
dis_net.to(device)
dis_net.apply(weights_init_normal)
if opt.netG != '':
gen_net.load_state_dict(torch.load(opt.netG, map_location=lambda storage, location: storage)['state_dict'])
resume_epoch = torch.load(opt.netG)['epoch']
# print('G loaded')
if opt.netD != '':
dis_net.load_state_dict(torch.load(opt.netD, map_location=lambda storage, location: storage)['state_dict'])
resume_epoch = torch.load(opt.netD)['epoch']
# print('D loaded')
# print(resume_epoch)
losses1, losses2 = [], []
for i, data in enumerate(test_loader):
real_center, target, prior = data
batch_size = real_center.size()[0]
if batch_size < opt.batchSize: continue
real_center = real_center.float()
input_cropped1 = torch.FloatTensor(batch_size, opt.pnum, 3)
input_cropped1 = input_cropped1.data.copy_(real_center)
real_center = torch.unsqueeze(real_center, 1)
input_cropped1 = torch.unsqueeze(input_cropped1, 1)
real_center = real_center.to(device)
target = target.to(device)
real_center = torch.squeeze(real_center, 1)
input_cropped1 = input_cropped1.to(device)
input_cropped1 = torch.squeeze(input_cropped1, 1)
input_cropped1 = Variable(input_cropped1, requires_grad=False)
gen_net.eval()
fake_fine1, fake_fine, conv11, conv12 = gen_net(input_cropped1)
# _, fake_fine, conv11, conv12, conv21, conv22 = gen_net(input_cropped1, prior)
CD_loss_all, dist1, dist2 = criterion_PointLoss(torch.squeeze(fake_fine,1),torch.squeeze(target,1))
#print('test CD loss: %.4f'%(dist1.item()))
print('pred->GT|GT->pred:', dist1.item(), dist2.item())
losses2.append(dist1.item())
losses1.append(dist2.item())
print('mean CD loss pred->GT|GT->pred:', np.mean(losses1)*1000, np.mean(losses2)*1000)
print('max CD loss pred->GT|GT->pred: ', np.amax(losses1)*1000, np.amax(losses2)*1000)
print('min CD loss: pred->GT|GT->pred', np.amin(losses1)*1000, np.amin(losses2)*1000)