-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEncoder1024.py
244 lines (201 loc) · 8.04 KB
/
Encoder1024.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
from torch.autograd import Variable
import numpy as np
import torch.nn.functional as F
import torch
from pointnet_util import PointNetSetAbstraction, get_graph_feature
from Attention.Cluster_Attention import MultiHeadAttention as MHA
from Attention.positionwiseFeedForward import PositionwiseFeedForward
class Attention(nn.Module):
def __init__(self, Fea, q=1, v=1, h=1, dropout=0.3):
super(Attention, self).__init__()
# attention
# eight heads for now
self.q, self.v, self.h = q, v, h
self.dropout = dropout
# input should be (batch, cluster, feature)
# (b, N, feature)
self.Fea = Fea
self.skipAttention = MHA(self.Fea, self.q, self.v, self.h)
self.feedForward = PositionwiseFeedForward(self.Fea)
self.layerNorm1 = nn.LayerNorm(self.Fea)
self.layerNorm2 = nn.LayerNorm(self.Fea)
self.dropout = nn.Dropout(p=self.dropout)
def forward(self, x):
# print('here-------------------------')
# print(x.shape)
x = x.permute(0, 2, 1)
residual = x
x = self.skipAttention(query=x, key=x, value=x)
x = self.dropout(x)
x = self.layerNorm1(x + residual)
# Feed forward
residual = x
x = self.feedForward(x)
x = self.dropout(x)
x = self.layerNorm2(x + residual)
x = x.permute(0, 2, 1)
return x
class Encoder(nn.Module):
def __init__(self, num_points):
super(Encoder, self).__init__()
self.fe1 = FeatureExtractor_1(4, 1024)
# self.out_layer = nn.MaxPool2d((1, 2), 1)
def forward(self, x):
out_1, conv11, conv12 = self.fe1(x) # (batch_size, 512, 3) || (batch_size, 1920)
# out = torch.cat((out_1), 2) # (batch_size, 1920, 2)
# print(out.shape)
out = out_1.view(-1, 1024) # (batch_size, 1920)
return out, conv11, conv12
def downsampling(self, x): # (batch_size, 2048, 3)
pass
class FeatureExtractor_1(nn.Module):
def __init__(self, k, emb_dims, output_channels=40):
super(FeatureExtractor_1, self).__init__()
self.k = k
self.emb_dims = emb_dims
self.conv1 = nn.Sequential(nn.Conv2d(6, 32, kernel_size=1, bias=False),
nn.BatchNorm2d(32),
nn.LeakyReLU(negative_slope=0.2))
self.conv2 = nn.Sequential(nn.Conv2d(32 * 2, 64, kernel_size=1, bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(negative_slope=0.2))
self.conv3 = nn.Sequential(nn.Conv2d(64 * 2, 128, kernel_size=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(negative_slope=0.2))
self.conv4 = nn.Sequential(nn.Conv2d(128 * 2, 256, kernel_size=1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.2))
self.conv5 = nn.Sequential(nn.Conv2d(256 * 2, 512, kernel_size=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.2))
self.conv6 = nn.Sequential(nn.Conv2d(512 * 2, self.emb_dims, kernel_size=1, bias=False),
nn.BatchNorm2d(self.emb_dims),
nn.LeakyReLU(negative_slope=0.2))
self._attention6 = Attention(1024) # 256
self.maxpool = nn.MaxPool2d((1, 2048), 1)
def forward(self, x):
batch_size = x.size(0)
x = x.permute(0, 2, 1)
x = get_graph_feature(x, k=self.k)
x = self.conv1(x)
x1 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x1, k=self.k)
x = self.conv2(x)
x2 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x2, k=self.k)
x = self.conv3(x)
x3 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x3, k=self.k)
x = self.conv4(x)
x4 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x4, k=self.k)
x = self.conv5(x)
x5 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x5, k=self.k)
x = self.conv6(x)
x6 = x.max(dim=-1, keepdim=False)[0]
x6 = self._attention6(x6)
# x3 = torch.squeeze(self.maxpool(x3), 2)
# x4 = torch.squeeze(self.maxpool(x4), 2)
# x5 = torch.squeeze(self.maxpool(x5), 2)
x6 = torch.squeeze(self.maxpool(x6), 2)
#
# output = torch.cat((x3, x4, x5, x6), dim=1)
output = x6.view(batch_size, -1, 1)
return output, x1, x2
class FeatureExtractor_2(nn.Module):
def __init__(self, k, emb_dims, output_channels=40):
super(FeatureExtractor_2, self).__init__()
self.k = k
self.emb_dims = emb_dims
self.conv1 = nn.Sequential(nn.Conv2d(6, 32, kernel_size=1, bias=False),
nn.BatchNorm2d(32),
nn.LeakyReLU(negative_slope=0.2))
self.conv2 = nn.Sequential(nn.Conv2d(32 * 2, 64, kernel_size=1, bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(negative_slope=0.2))
self.conv3 = nn.Sequential(nn.Conv2d(64 * 2, 128, kernel_size=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(negative_slope=0.2))
self.conv4 = nn.Sequential(nn.Conv2d(128 * 2, 256, kernel_size=1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(negative_slope=0.2))
self.conv5 = nn.Sequential(nn.Conv2d(256 * 2, 512, kernel_size=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(negative_slope=0.2))
self.conv6 = nn.Sequential(nn.Conv2d(512 * 2, self.emb_dims, kernel_size=1, bias=False),
nn.BatchNorm2d(self.emb_dims),
nn.LeakyReLU(negative_slope=0.2))
self._attention6 = Attention(1024) # 256
self.maxpool = nn.MaxPool2d((1, 2048), 1)
def forward(self, x):
batch_size = x.size(0)
x = x.permute(0, 2, 1)
x = get_graph_feature(x, k=self.k)
x = self.conv1(x)
x1 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x1, k=self.k)
x = self.conv2(x)
x2 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x2, k=self.k)
x = self.conv3(x)
x3 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x3, k=self.k)
x = self.conv4(x)
x4 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x4, k=self.k)
x = self.conv5(x)
x5 = x.max(dim=-1, keepdim=False)[0]
x = get_graph_feature(x5, k=self.k)
x = self.conv6(x)
x6 = x.max(dim=-1, keepdim=False)[0]
x6 = self._attention6(x6)
# x3 = torch.squeeze(self.maxpool(x3), 2)
# x4 = torch.squeeze(self.maxpool(x4), 2)
# x5 = torch.squeeze(self.maxpool(x5), 2)
x6 = torch.squeeze(self.maxpool(x6), 2)
#
# output = torch.cat((x3, x4, x5, x6), dim=1)
output = x6.view(batch_size, -1, 1)
return output, x1, x2
class Decoder(nn.Module):
def __init__(self, num_points, crop_point_num):
super(Decoder, self).__init__()
self.crop_point_num = crop_point_num
self.latentfeature = Encoder(num_points)
self.fc1 = nn.Linear(1024, 1024) #x
self.fc2 = nn.Linear(1024, 512) #x_2
self.latent_vector = None
self.fc1_1 = nn.Linear(1024, 128 * self.crop_point_num) #x
self.fc2_1 = nn.Linear(512, 64 * 128) #x_2
self.conv1_1 = torch.nn.Conv1d(self.crop_point_num, 512, 1)
self.conv1_2 = torch.nn.Conv1d(512, 256, 1)
self.conv1_3 = torch.nn.Conv1d(256, int((self.crop_point_num * 3) / 128), 1)
self.conv2_1 = torch.nn.Conv1d(128, 6, 1)
def forward(self, x):
x, conv11, conv12= self.latentfeature(x)
self.latent_vector = x
x = F.relu(self.fc1(x)) # 1024
x_2 = F.relu(self.fc2(x)) # 512
x_2 = self.fc2_1(x_2)
x_2 = x_2.reshape(-1, 128, 64)
x_2 = self.conv2_1(x_2)
x = F.relu(self.fc1_1(x))
x = x.reshape(-1, self.crop_point_num, 128)
x = F.relu(self.conv1_1(x))
x = F.relu(self.conv1_2(x))
x = self.conv1_3(x) # 12x128
x = x.reshape(-1, 128, int(self.crop_point_num / 128), 3)
# print("Teacher x",x.shape)
x_2 = x_2.reshape(-1, 128, 1, 3)
# print("Teacher x_2",x_2.shape)
# print(x.shape) #(6, 128, 4, 3)
# print(x_2.shape) #(6, 128, 1, 3)
x = x + x_2 # 128x4x3
x = x.reshape(-1, self.crop_point_num, 3) # 512x3 Local Points
# print("Teacher Decoder Channel Shape",x_2.squeeze().shape, x.shape)
return x_2.squeeze(), x, conv11, conv12,self.latent_vector