-
Notifications
You must be signed in to change notification settings - Fork 601
/
Copy pathdeployNeuralNetwork.py
52 lines (38 loc) · 1.43 KB
/
deployNeuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import tensorflow.keras
from PIL import Image, ImageOps
import numpy as np
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Load the model
model = tensorflow.keras.models.load_model('keras_model.h5')
# Load the labels
with open('labels.txt', 'r') as f:
class_names = f.read().split('\n')
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
#image = Image.open('thumbsUp.jpg')
#image = Image.open('wave.jpg')
image = Image.open('victory.jpg')
#resize the image to a 224x224 with the same strategy as in TM2:
#resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.ANTIALIAS)
#turn the image into a numpy array
image_array = np.asarray(image)
# display the resized image
image.show()
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array
# run the inference
prediction = model.predict(data)
print(prediction)
index = np.argmax(prediction)
class_name = class_names[index]
confidence_score = prediction[0][index]
print("Class: ", class_name)
print("Confidence score: ", confidence_score)