forked from nerfstudio-project/nerfstudio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
165 lines (144 loc) · 5.56 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Define base image.
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
# metainformation
LABEL org.opencontainers.image.version = "0.1.18"
LABEL org.opencontainers.image.source = "https://github.com/nerfstudio-project/nerfstudio"
LABEL org.opencontainers.image.licenses = "Apache License 2.0"
LABEL org.opencontainers.image.base.name="docker.io/library/nvidia/cuda:11.8.0-devel-ubuntu22.04"
# Variables used at build time.
## CUDA architectures, required by Colmap and tiny-cuda-nn.
## NOTE: All commonly used GPU architectures are included and supported here. To speedup the image build process remove all architectures but the one of your explicit GPU. Find details here: https://developer.nvidia.com/cuda-gpus (8.6 translates to 86 in the line below) or in the docs.
ARG CUDA_ARCHITECTURES=90;89;86;80;75;70;61;52;37
# Set environment variables.
## Set non-interactive to prevent asking for user inputs blocking image creation.
ENV DEBIAN_FRONTEND=noninteractive
## Set timezone as it is required by some packages.
ENV TZ=Europe/Berlin
## CUDA Home, required to find CUDA in some packages.
ENV CUDA_HOME="/usr/local/cuda"
# Install required apt packages and clear cache afterwards.
RUN apt-get update && \
apt-get install -y --no-install-recommends \
build-essential \
cmake \
curl \
ffmpeg \
git \
libatlas-base-dev \
libboost-filesystem-dev \
libboost-graph-dev \
libboost-program-options-dev \
libboost-system-dev \
libboost-test-dev \
libhdf5-dev \
libcgal-dev \
libeigen3-dev \
libflann-dev \
libfreeimage-dev \
libgflags-dev \
libglew-dev \
libgoogle-glog-dev \
libmetis-dev \
libprotobuf-dev \
libqt5opengl5-dev \
libsqlite3-dev \
libsuitesparse-dev \
nano \
protobuf-compiler \
python-is-python3 \
python3.10-dev \
python3-pip \
qtbase5-dev \
sudo \
vim-tiny \
wget && \
rm -rf /var/lib/apt/lists/*
# Install GLOG (required by ceres).
RUN git clone --branch v0.6.0 https://github.com/google/glog.git --single-branch && \
cd glog && \
mkdir build && \
cd build && \
cmake .. && \
make -j `nproc` && \
make install && \
cd ../.. && \
rm -rf glog
# Add glog path to LD_LIBRARY_PATH.
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/lib"
# Install Ceres-solver (required by colmap).
RUN git clone --branch 2.1.0 https://ceres-solver.googlesource.com/ceres-solver.git --single-branch && \
cd ceres-solver && \
git checkout $(git describe --tags) && \
mkdir build && \
cd build && \
cmake .. -DBUILD_TESTING=OFF -DBUILD_EXAMPLES=OFF && \
make -j `nproc` && \
make install && \
cd ../.. && \
rm -rf ceres-solver
# Install colmap.
RUN git clone --branch 3.8 https://github.com/colmap/colmap.git --single-branch && \
cd colmap && \
mkdir build && \
cd build && \
cmake .. -DCUDA_ENABLED=ON \
-DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES} && \
make -j `nproc` && \
make install && \
cd ../.. && \
rm -rf colmap
# Create non root user and setup environment.
RUN useradd -m -d /home/user -g root -G sudo -u 1000 user
RUN usermod -aG sudo user
# Set user password
RUN echo "user:user" | chpasswd
# Ensure sudo group users are not asked for a password when using sudo command by ammending sudoers file
RUN echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers
# Switch to new uer and workdir.
USER 1000
WORKDIR /home/user
# Add local user binary folder to PATH variable.
ENV PATH="${PATH}:/home/user/.local/bin"
SHELL ["/bin/bash", "-c"]
# Upgrade pip and install packages.
RUN python3.10 -m pip install --upgrade pip setuptools pathtools promise pybind11
# Install pytorch and submodules (Currently, we still use cu116 which is the latest version for torch 1.12.1 and is compatible with CUDA 11.8).
RUN python3.10 -m pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
# Install tynyCUDNN (we need to set the target architectures as environment variable first).
ENV TCNN_CUDA_ARCHITECTURES=${CUDA_ARCHITECTURES}
RUN python3.10 -m pip install git+https://github.com/NVlabs/[email protected]#subdirectory=bindings/torch
# Install pycolmap 0.3.0, required by hloc.
# TODO(https://github.com/colmap/pycolmap/issues/111) use wheel when available for Python 3.10
RUN git clone --branch v0.3.0 --recursive https://github.com/colmap/pycolmap.git && \
cd pycolmap && \
python3.10 -m pip install . && \
cd ..
# Install hloc master (last release (1.3) is too old) as alternative feature detector and matcher option for nerfstudio.
RUN git clone --branch master --recursive https://github.com/cvg/Hierarchical-Localization && \
cd Hierarchical-Localization && \
python3.10 -m pip install -e . && \
cd ..
# Install pyceres from source
RUN git clone --branch main --recursive https://github.com/cvg/pyceres.git && \
cd pyceres && \
python3.10 -m pip install -e . && \
cd ..
# Install pixel perfect sfm.
RUN git clone --branch main --recursive https://github.com/cvg/pixel-perfect-sfm && \
cd pixel-perfect-sfm && \
python3.10 -m pip install -e . && \
cd ..
RUN python3.10 -m pip install omegaconf
# Copy nerfstudio folder and give ownership to user.
ADD . /home/user/nerfstudio
USER root
RUN chown -R user /home/user/nerfstudio
USER 1000
# Install nerfstudio dependencies.
RUN cd nerfstudio && \
python3.10 -m pip install -e . && \
cd ..
# Change working directory
WORKDIR /workspace
# Install nerfstudio cli auto completion and enter shell if no command was provided.
CMD ns-install-cli --mode install && /bin/bash