-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodels.py
283 lines (246 loc) · 12 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Neural net models for tabular datasets."""
from typing import Union, List
import numpy as np
import tensorflow as tf
TfInput = Union[np.ndarray, tf.Tensor]
def exu(x, weight, bias):
"""ExU hidden unit modification."""
return tf.exp(weight) * (x - bias)
# Activation Functions
def relu(x, weight, bias):
"""ReLU activation."""
return tf.nn.relu(weight * (x - bias))
def relu_n(x, n=1):
"""ReLU activation clipped at n."""
return tf.clip_by_value(x, 0, n)
class ActivationLayer(tf.keras.layers.Layer):
"""Custom activation Layer to support ExU hidden units."""
def __init__(self, num_units, name=None, activation='exu', trainable=True):
"""Initializes ActivationLayer hyperparameters.
Args:
num_units: Number of hidden units in the layer.
name: The name of the layer.
activation: Activation to use. The default value of `None` corresponds to
using the ReLU-1 activation with ExU units while `relu` would use
standard hidden units with ReLU activation.
trainable: Whether the layer parameters are trainable or not.
"""
super(ActivationLayer, self).__init__(trainable=trainable, name=name)
self.num_units = num_units
self._trainable = trainable
if activation == 'relu':
self._activation = relu
self._beta_initializer = 'glorot_uniform'
elif activation == 'exu':
self._activation = lambda x, weight, bias: relu_n(exu(x, weight, bias))
self._beta_initializer = tf.keras.initializers.TruncatedNormal(mean=4.0, stddev=0.5)
else:
raise ValueError('{} is not a valid activation'.format(activation))
def build(self, input_shape):
"""Builds the layer weight and bias parameters."""
self._beta = self.add_weight(name='beta',
shape=[input_shape[-1], self.num_units],
initializer=self._beta_initializer,
trainable=self._trainable)
self._c = self.add_weight(name='c',
shape=[1, self.num_units],
initializer=tf.keras.initializers.TruncatedNormal(stddev=0.5),
trainable=self._trainable)
super(ActivationLayer, self).build(input_shape)
@tf.function
def call(self, x):
"""Computes the output activations."""
center = tf.tile(self._c, [tf.shape(x)[0], 1])
out = self._activation(x, self._beta, center)
return out
class FeatureNN(tf.keras.layers.Layer):
"""Neural Network model for each individual feature.
Attributes:
hidden_layers: A list containing hidden layers. The first layer is an
`ActivationLayer` containing `num_units` neurons with specified
`activation`. If `shallow` is False, then it additionally contains 2
tf.keras.layers.Dense ReLU layers with 64, 32 hidden units respectively.
linear: Fully connected layer.
"""
def __init__(self,
num_units,
dropout=0.5,
trainable=True,
shallow=True,
feature_num=0,
name_scope='model',
activation='exu'):
"""Initializes FeatureNN hyperparameters.
Args:
num_units: Number of hidden units in first hidden layer.
dropout: Coefficient for dropout regularization.
trainable: Whether the FeatureNN parameters are trainable or not.
shallow: If True, then a shallow network with a single hidden layer is
created, otherwise, a network with 3 hidden layers is created.
feature_num: Feature Index used for naming the hidden layers.
name_scope: TF name scope str for the model.
activation: Activation and type of hidden unit(ExUs/Standard) used in the
first hidden layer.
"""
super(FeatureNN, self).__init__()
self._num_units = num_units
self._dropout = dropout
self._trainable = trainable
self._tf_name_scope = name_scope
self._feature_num = feature_num
self._shallow = shallow
self._activation = activation
def build(self, input_shape):
"""Builds the feature net layers."""
self.hidden_layers = [
ActivationLayer(self._num_units,
trainable=self._trainable,
activation=self._activation,
name='activation_layer_{}'.format(self._feature_num))
]
if not self._shallow:
self._h1 = tf.keras.layers.Dense(64,
activation='relu',
use_bias=True,
trainable=self._trainable,
name='h1_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self._h2 = tf.keras.layers.Dense(32,
activation='relu',
use_bias=True,
trainable=self._trainable,
name='h2_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self.hidden_layers += [self._h1, self._h2]
self.linear = tf.keras.layers.Dense(1,
use_bias=False,
trainable=self._trainable,
name='dense_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
super(FeatureNN, self).build(input_shape)
@tf.function
def call(self, x, training):
"""Computes FeatureNN output with either evaluation or training mode."""
with tf.name_scope(self._tf_name_scope):
for l in self.hidden_layers:
x = tf.nn.dropout(l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0))
x = tf.squeeze(self.linear(x), axis=1)
return x
class NAM(tf.keras.Model):
"""Neural additive model.
Attributes:
feature_nns: List of FeatureNN, one per input feature.
"""
def __init__(self, num_inputs, num_units, trainable=True, shallow=True, feature_dropout=0.0, dropout=0.0, **kwargs):
"""Initializes NAM hyperparameters.
Args:
num_inputs: Number of feature inputs in input data.
num_units: Number of hidden units in first layer of each feature net.
trainable: Whether the NAM parameters are trainable or not.
shallow: If True, then shallow feature nets with a single hidden layer are
created, otherwise, feature nets with 3 hidden layers are created.
feature_dropout: Coefficient for dropping out entire Feature NNs.
dropout: Coefficient for dropout within each Feature NNs.
**kwargs: Arbitrary keyword arguments. Used for passing the `activation`
function as well as the `name_scope`.
"""
super(NAM, self).__init__()
self._num_inputs = num_inputs
if isinstance(num_units, list):
assert len(num_units) == num_inputs
self._num_units = num_units
elif isinstance(num_units, int):
self._num_units = [num_units for _ in range(self._num_inputs)]
self._trainable = trainable
self._shallow = shallow
self._feature_dropout = feature_dropout
self._dropout = dropout
self._kwargs = kwargs
def build(self, input_shape):
"""Builds the FeatureNNs on the first call."""
self.feature_nns = [None] * self._num_inputs
for i in range(self._num_inputs):
self.feature_nns[i] = FeatureNN(num_units=self._num_units[i],
dropout=self._dropout,
trainable=self._trainable,
shallow=self._shallow,
feature_num=i,
**self._kwargs)
self._bias = self.add_weight(name='bias',
initializer=tf.keras.initializers.Zeros(),
shape=(1,),
trainable=self._trainable)
self._true = tf.constant(True, dtype=tf.bool)
self._false = tf.constant(False, dtype=tf.bool)
def call(self, x, training=True):
"""Computes NAM output by adding the outputs of individual feature nets."""
individual_outputs = self.calc_outputs(x, training=training)
stacked_out = tf.stack(individual_outputs, axis=-1)
training = self._true if training else self._false
dropout_out = tf.nn.dropout(stacked_out, rate=tf.cond(training, lambda: self._feature_dropout, lambda: 0.0))
out = tf.reduce_sum(dropout_out, axis=-1)
return out + self._bias
def _name_scope(self):
"""Overrides the default function to fix name_scope for bias."""
tf_name_scope = self._kwargs.get('name_scope', None)
name_scope = super(NAM, self)._name_scope()
if tf_name_scope:
return tf_name_scope + '/' + name_scope
else:
return name_scope
def calc_outputs(self, x, training=True):
"""Returns the output computed by each feature net."""
training = self._true if training else self._false
list_x = tf.split(x, self._num_inputs, axis=-1)
return [self.feature_nns[i](x_i, training=training) for i, x_i in enumerate(list_x)]
class DNN(tf.keras.Model):
"""Deep Neural Network with 10 hidden layers.
Attributes:
hidden_layers: A list of 10 tf.keras.layers.Dense layers with ReLU.
linear: Fully-connected layer.
"""
def __init__(self, trainable=True, dropout=0.15):
"""Creates the DNN layers.
Args:
trainable: Whether the DNN parameters are trainable or not.
dropout: Coefficient for dropout regularization.
"""
super(DNN, self).__init__()
self._dropout = dropout
self.hidden_layers = [None for _ in range(10)]
for i in range(10):
self.hidden_layers[i] = tf.keras.layers.Dense(100,
activation='relu',
use_bias=True,
trainable=trainable,
name='dense_{}'.format(i),
kernel_initializer='he_normal')
self.linear = tf.keras.layers.Dense(1,
use_bias=True,
trainable=trainable,
name='linear',
kernel_initializer='he_normal')
self._true = tf.constant(True, dtype=tf.bool)
self._false = tf.constant(False, dtype=tf.bool)
def call(self, x, training=True):
"""Creates the output tensor given an input."""
training = self._true if training else self._false
for l in self.hidden_layers:
x = tf.nn.dropout(l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0))
x = tf.squeeze(self.linear(x), axis=-1)
return x