-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_avgdeviat.Rmd
524 lines (382 loc) · 20.5 KB
/
analysis_avgdeviat.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
---
title: "Political Conspiracies - Average Deviation"
author: "Nick Duran"
date: 05/30/17
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
rm(list=ls())
library(dplyr) ##// generate descriptives
library(lme4) ##// generate mixed effects models
library(multcomp) ##// glht, allows multiple comparisons in unibus models, standardized method for computing p
library(MuMIn) ##// compute effect sizes
library(pander)
source("summary_stats.r")
```
# NONBELIEF SUBSET - BETWEEN PARTISAN
For this analysis, an omnibus statistical model was built to explore the three-way interaction between political party (Republican = 0.5, Democrat = -0.5), statement directness (Direct = 0.5, Indirect = -0.5), and statement types, with the latter coded as planned contrasts that compare how disavowed political conspiracy statements (“Obama” or “Bush”) were answered relative to: a) each other (Obama = 0.5, Bush = -0.5), b) general political knowledge (“GK”) as control baseline (Obama or Bush = 0.5, GK = -0.5), and c) disavowed general conspiracies (“GC”) as control baseline (Obama or Bush = 0.5, GC = -0.5).
## Preliminaries
```{r}
#### Read Data ####
fromprep = read.delim("/Users/nduran/Dropbox (ASU)/POLIBELIEFS/analysis/JESP/REDO/3_Ranalysis/Mouse-Traj-2GIT.csv", header = TRUE,sep=',')
```
**Recoding:**
```{r}
fromprep <- within( fromprep, {
group.id <- subjnum ## subject number
item.id <- questionType ## item code
dependent.variable <- value ## action dynamic response variables
## Factor 1: Identification as Republican or Democrat (2-levels; between-subject)
political.identity <- poliID2
## Factor 2: Wording of item direct or indirect (2-levels; within-subject)
statement.direct <- explicit
## Factor 3: Item conspiracy about Bush, Obama, or general, or a general knowledge (4-levels; within-subject)
BO.GB.GK.GC <- resp_type
condition <- ifelse( BO.GB.GK.GC=="Gen Conspiracy", "Gen Conspiracy",
ifelse( BO.GB.GK.GC=="Right-wing", "Obama",
ifelse( BO.GB.GK.GC=="Left-wing", "Bush",
ifelse( BO.GB.GK.GC=="Gen Knowledge", "Gen Knowledge", NA )) ) )
} )
c_scale <- function(x) {
scale(x, scale = FALSE) }
fromprep <- within( fromprep, age.c <- c_scale(fromprep$age) )
```
**Descriptives of main variables:**
```{r echo=FALSE}
fromprep2 = subset( fromprep, endorse!="C" & variable=="avgdeviat")
summt = dplyr::summarize(group_by(fromprep2,statement.direct,political.identity,condition),
mean=mean(value), se=sd(value)/sqrt(length(value)))
pander(summt)
```
**Contrast structure:**
```{r}
nonbelief.data <- within( subset( fromprep, endorse!="C" ), {
## for doing follow-up simple effects analyses if three-way is significant
Reject.as.False <- ifelse( statement.direct=="Reject as False", 0,
ifelse( statement.direct=="Accept as True", 1, NA ) )
## for doing follow-up simple effects analyses if three-way is significant
Accept.as.True <- ifelse( statement.direct=="Reject as False", 1,
ifelse( statement.direct=="Accept as True", 0, NA ) )
political.identity.b <- ifelse( political.identity=="Democrat", -1/2,
ifelse( political.identity=="Republican", 1/2, NA ) )
statement.direct.w <- ifelse( statement.direct=="Reject as False", 1/2,
ifelse( statement.direct=="Accept as True", -1/2, NA ) )
ObamaVsKnowledge <- ifelse( condition=="Bush", 0,
ifelse( condition=="Obama", 1/2,
ifelse( condition=="Gen Conspiracy", 0,
ifelse( condition=="Gen Knowledge", -1/2, NA ))))
BushVsKnowledge <- ifelse( condition=="Bush", 1/2,
ifelse( condition=="Obama", 0,
ifelse( condition=="Gen Conspiracy", 0,
ifelse( condition=="Gen Knowledge", -1/2, NA ))))
GeneralVsKnowledge <- ifelse( condition=="Bush", 0,
ifelse( condition=="Obama", 0,
ifelse( condition=="Gen Conspiracy", 1/2,
ifelse( condition=="Gen Knowledge", -1/2, NA ))))
} )
```
## Statistical Models
```{r message=FALSE}
omnibus.nonbeliever.model <- lmer( dependent.variable ~ (1|group.id) + (1|item.id) + age.c + political.identity.b * statement.direct.w * (ObamaVsKnowledge + BushVsKnowledge + GeneralVsKnowledge), data=nonbelief.data, REML=FALSE, na.action = na.exclude, subset=variable=="avgdeviat" )
```
```{r echo=FALSE}
df1 = data.frame(summary(omnibus.nonbeliever.model)$coefficients)
# pander(df1[1])
df1[1]
```
```{r echo=FALSE}
##// Effect Size
r.squaredGLMM(omnibus.nonbeliever.model)[2]
```
**Test for relevant two-way interaction:**
```{r message=FALSE}
twoway.nonbeliever.model = update(omnibus.nonbeliever.model,.~.-political.identity.b:ObamaVsKnowledge-political.identity.b:BushVsKnowledge-political.identity.b:GeneralVsKnowledge)
```
```{r echo=FALSE}
modComp(omnibus.nonbeliever.model,twoway.nonbeliever.model,"twoway.nonbeliever.model")
```
**Test for relevant three-way interaction:**
```{r message=FALSE}
threeway.nonbeliever.model = update(omnibus.nonbeliever.model,.~.-political.identity.b:statement.direct.w:ObamaVsKnowledge-political.identity.b:statement.direct.w:BushVsKnowledge)
```
```{r echo=FALSE}
modComp(omnibus.nonbeliever.model,threeway.nonbeliever.model,"threeway.nonbeliever.model")
```
**Interpreting the omnibus coefficients:**
```{r}
planCont = rbind(
# note that "Bush" becomes the new baseline; Obama vs. Bush
"RQ1.2way" = c(0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0),
# Obama vs. GK
"RQ2.2way" = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
# Bush vs. GK
"RQ3.2way" = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
# note that GC becomes the new baseline; Obama vs. GC
"RQ4.2way" = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0),
# note that GC becomes the new baseline; Bush vs. GC
"RQ5.2way" = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0))
# # Obama vs. Bush vs. directness
# "RQ1.3way" = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1),
# # Obama vs. GK vs. directness
# "RQ2.3way" = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
# # Bush vs. GK vs. directness
# "RQ3.3way" = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1))
```
```{r echo=FALSE}
runContrasts(omnibus.nonbeliever.model, planCont, "nonbelief")
```
<!-- **Simple effects follow-up (assuming sig 3-way):** -->
<!-- Important note: "You only pay attention to effects in the following models that do NOT interact with the dummy codes (i.e., ignore any fixed effect that includes "Reject.as.False" or "Accept.as.True," whether it is an interaction or main effect)" -->
```{r message=FALSE, echo=FALSE, eval=FALSE}
##// Reject as False
raf.omnibus.nonbeliever <- lmer( dependent.variable ~ (1|group.id) + (1|item.id) + age.c + political.identity.b * Reject.as.False * (ObamaVsKnowledge + BushVsKnowledge), data=nonbelief.data, REML=FALSE, na.action = na.exclude, subset=variable=="avgdeviat" )
##// test for two-way interaction in order to follow-up
raf.nonbeliever = update( raf.omnibus.nonbeliever, .~.-political.identity.b:ObamaVsKnowledge-political.identity.b:BushVsKnowledge)
```
```{r echo=FALSE, eval=FALSE}
# modComp(raf.nonbeliever,raf.omnibus.nonbeliever,"rejectasfalse.nonbeliever.model")
```
```{r echo=FALSE, eval=FALSE}
df1 = data.frame(summary(raf.omnibus.nonbeliever)$coefficients)
df1[1]
```
```{r echo=FALSE, eval=FALSE}
planCont = rbind(
# testing "political.identity.b:ObamaVsKnowledge" vs. "political.identity.b:BushVsKnowledge"
"PI:OvB" = c(0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0),
# testing "political.identity.b:ObamaVsKnowledge"
"PI:OvK" = c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
# testing "political.identity.b:BushVsKnowledge"
"PI:BvK" = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0))
```
```{r echo=FALSE, eval=FALSE}
runContrasts(raf.omnibus.nonbeliever, planCont, "rejectasfalse/nonbelief")
```
```{r message=FALSE, echo=FALSE, eval=FALSE}
##// Accept as True
aat.omnibus.nonbeliever <- lmer( dependent.variable ~ (1|group.id) + (1|item.id) + age.c + political.identity.b * Accept.as.True * (ObamaVsKnowledge + BushVsKnowledge), data=nonbelief.data, REML=FALSE, na.action = na.exclude, subset=variable=="avgdeviat" )
##// test for two-way interaction in order to follow-up
aat.nonbeliever = update( aat.omnibus.nonbeliever, .~.-political.identity.b:ObamaVsKnowledge-political.identity.b:BushVsKnowledge)
```
```{r echo=FALSE, eval=FALSE}
modComp(aat.nonbeliever,aat.omnibus.nonbeliever,"acceptastrue.nonbeliever.model")
```
```{r echo=FALSE, eval=FALSE}
df1 = data.frame(summary(aat.omnibus.nonbeliever)$coefficients)
df1[1]
```
```{r echo=FALSE, eval=FALSE}
planCont = rbind(
# testing "political.identity.b:ObamaVsKnowledge" vs. "political.identity.b:BushVsKnowledge"
"PI:OvB" = c(0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0),
# testing "political.identity.b:ObamaVsKnowledge"
"PI:OvK" = c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
# testing "political.identity.b:BushVsKnowledge"
"PI:BvK" = c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0))
```
```{r echo=FALSE, eval=FALSE}
runContrasts(aat.omnibus.nonbeliever, planCont, "acceptastrue/nonbelief")
```
# NONBELIEF SUBSET - WITHIN PARTISAN
We continue to examine nonbelief responses using the same omnibus model as above, but rather than comparing relative differences between Republicans and Democrats, the goal here is to evaluate how partisans answer political conspiracies (relative to baseline statements) as a self-contained ideological group. Accordingly, the interaction term with political party is removed and replaced with a dummy-coded variable that allows Republicans and Democrats to be evaluated separately, with a focus on the main effect of statement types as a series of planned contrasts, and their interaction with statement directness.
```{r}
nonbelief.data <- within( subset( nonbelief.data, endorse!="C" ), {
## for within subjects analysis
republican <- ifelse( poliID2=="Republican", 0,
ifelse( poliID2=="Democrat", 1, NA ) )
## for within subjects analysis
democrat <- ifelse( poliID2=="Democrat", 0,
ifelse( poliID2=="Republican", 1, NA ) )
} )
```
## Statistical Models
**Republicans**
<!-- Important note: "You only pay attention to effects in the following models that do NOT interact with the dummy codes (i.e., ignore any fixed effect that includes "republican" or "democrat," whether it is an interaction or main effect)" -->
```{r message=FALSE}
republican.omnibus.nonbeliever.model <- lmer( dependent.variable ~ (1|group.id) + (1|item.id) + age.c + statement.direct.w * republican * (ObamaVsKnowledge + BushVsKnowledge + GeneralVsKnowledge), data=nonbelief.data, REML=FALSE, na.action = na.exclude, subset=variable=="avgdeviat" )
```
```{r echo=FALSE}
df1 = data.frame(summary(republican.omnibus.nonbeliever.model)$coefficients)
df1[1]
```
```{r echo=FALSE}
##// Effect Size # should be the same as omnibus
# r.squaredGLMM(republican.omnibus.nonbeliever.model)[2]
```
```{r message=FALSE}
##// test for main effect in order to follow-up
republican.nonbeliever.main = update( republican.omnibus.nonbeliever.model, .~.-ObamaVsKnowledge-BushVsKnowledge-GeneralVsKnowledge)
```
```{r echo=FALSE}
modComp(republican.nonbeliever.main,republican.omnibus.nonbeliever.model,"republican.nonbeliever.main")
```
```{r}
planCont = rbind(
# note that "Bush" items become the new baseline
"OvB" = c(0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
"OvK" = c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
"BvK" = c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
# note that "General Conspiracy" items become the new baseline
"OvGC" = c(0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0),
"BvGC" = c(0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0))
# note that "General Conspiracy" items become the new baseline
# "OvB:Direct" = c(0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 1, -1),
# "OvK:Direct" = c(0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0),
# "BvK:Direct" = c(0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1))
```
```{r echo=FALSE}
runContrasts(republican.omnibus.nonbeliever.model, planCont, "republican/nonbelief")
```
```{r message=FALSE}
##// test for two-way interaction in order to follow-up
republican.nonbeliever.twoway = update( republican.omnibus.nonbeliever.model, .~.-statement.direct.w:ObamaVsKnowledge-statement.direct.w:BushVsKnowledge)
```
```{r echo=FALSE}
modComp(republican.nonbeliever.twoway,republican.omnibus.nonbeliever.model,"republican.nonbeliever.twoway")
```
**Democrats**
<!-- Important note: "You only pay attention to effects in the following models that do NOT interact with the dummy codes (i.e., ignore any fixed effect that includes "republican" or "democrat," whether it is an interaction or main effect)" -->
```{r message=FALSE}
democrat.omnibus.nonbeliever.model <- lmer( dependent.variable ~ (1|group.id) + (1|item.id) + age.c + statement.direct.w * democrat * (ObamaVsKnowledge + BushVsKnowledge + GeneralVsKnowledge), data=nonbelief.data, REML=FALSE, na.action = na.exclude, subset=variable=="avgdeviat" )
```
```{r echo=FALSE}
df1 = data.frame(summary(democrat.omnibus.nonbeliever.model)$coefficients)
df1[1]
```
```{r echo=FALSE}
##// Effect Size
# r.squaredGLMM(democrat.omnibus.nonbeliever.model)[2]
```
```{r message=FALSE}
##// test for main effect in order to follow-up
democrat.nonbeliever.main = update( democrat.omnibus.nonbeliever.model, .~.-ObamaVsKnowledge-BushVsKnowledge-GeneralVsKnowledge)
```
```{r echo=FALSE}
modComp(democrat.nonbeliever.main,democrat.omnibus.nonbeliever.model,"democrat.nonbeliever.main")
```
```{r eval=FALSE, echo=FALSE}
planCont = rbind(
# note that "Bush" items become the new baseline
"OvB" = c(0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
"OvK" = c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
"BvK" = c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
# note that "General Conspiracy" items become the new baseline
"OvGC" = c(0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0),
"BvGC" = c(0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0))
```
```{r eval=FALSE, echo=FALSE}
runContrasts(democrat.omnibus.nonbeliever.model, planCont, "democrat/nonbelief")
```
```{r message=FALSE}
##// test for two-way interaction in order to follow-up
democrat.nonbeliever.twoway = update( democrat.omnibus.nonbeliever.model, .~.-statement.direct.w:ObamaVsKnowledge-statement.direct.w:BushVsKnowledge)
```
```{r echo=FALSE}
modComp(democrat.nonbeliever.twoway,democrat.omnibus.nonbeliever.model,"democrat.nonbeliever.twoway")
```
<!-- Add the planned contrast structure here for the two-way coefficients, assuming overall is significant -->
# BELIEF SUBSET - WITHIN PARTISAN
For this final analysis, we now examine belief responses for Republicans and Democrats as separate groups (within groups analysis). The main research question is concerned with whether participants show accuracy/self-presentation biases when endorsing party concordant political conspiracies; for Republicans, these are unique to Obama political conspiracies, for Democrats, these are unique to Bush political conspiracies. Changes in initial latency and average deviation for these items were assessed relative to how participants responded to general political knowledge items as a baseline.
## Preliminaries
**Recoding:**
```{r}
#### Read Data ####
fromprep = read.delim("/Users/nduran/Dropbox (ASU)/POLIBELIEFS/analysis/JESP/REDO/3_Ranalysis/Mouse-Traj-1GIT.csv", header = TRUE,sep=',')
```
<!-- Also, remember that the "Accept As True" statements are now the "directly stated" items, and the "Reject as False" are the "indirectly stated." -->
```{r}
fromprep <- within( fromprep, {
group.id <- subjnum ## subject number
item.id <- questionType ## item code
dependent.variable <- value ## action dynamic response variables
## Factor 1: Wording of item direct or indirect (2-levels; within-subject)
statement.direct <- explicit
## Factor 2: Item conspiracy about Bush, Obama, or general, or a general knowledge (4-levels; within-subject)
BO.GB.GK.GC <- resp_type
condition.belief <- ifelse( BO.GB.GK.GC=="Gen Conspiracy", "Gen Conspiracy",
ifelse( BO.GB.GK.GC=="Right-wing" & poliID2=="Republican", "Party Concordant",
ifelse( BO.GB.GK.GC=="Left-wing" & poliID2=="Democrat", "Party Concordant",
ifelse( BO.GB.GK.GC=="Right-wing" & poliID2=="Democrat", "Party Discordant",
ifelse( BO.GB.GK.GC=="Left-wing" & poliID2=="Republican", "Party Discordant",
ifelse( BO.GB.GK.GC=="Gen Knowledge", "Gen Knowledge", NA )))) ) )
} )
c_scale <- function(x) {
scale(x, scale = FALSE) }
fromprep <- within( fromprep, age.c <- c_scale(fromprep$age) )
```
**Contrast structure:**
```{r}
belief.data <- within( subset( fromprep, endorse!="NC" ), {
## for within subjects analysis
republican <- ifelse( poliID2=="Republican", 0,
ifelse( poliID2=="Democrat", 1, NA ) )
## for within subjects analysis
democrat <- ifelse( poliID2=="Democrat", 0,
ifelse( poliID2=="Republican", 1, NA ) )
statement.direct.w <- ifelse( statement.direct=="Reject as False", 1/2,
ifelse( statement.direct=="Accept as True", -1/2, NA ) )
noGCPD.PartyVsKnowledge <- ifelse( condition.belief=="Party Concordant", 1/2,
ifelse( condition.belief=="Party Discordant", NA,
ifelse( condition.belief=="Gen Conspiracy", NA,
ifelse( condition.belief=="Gen Knowledge", -1/2, NA ))))
} )
```
## Statistical Models
**Republicans**
**Descriptives of main variables:**
```{r echo=FALSE}
fromprep2 = subset( fromprep, endorse!="NC" & variable=="avgdeviat" & poliID2=="Republican")
summt = dplyr::summarize(group_by(fromprep2,statement.direct,condition.belief),
mean=mean(value), se=sd(value)/sqrt(length(value)))
pander(summt)
```
<!-- Important note: "You only pay attention to effects in the following models that do NOT interact with the dummy codes (i.e., ignore any fixed effect that includes "republican" or "democrat," whether it is an interaction or main effect)" -->
```{r}
republican.omnibus.believer.model <- lmer( dependent.variable ~ (1|group.id) + (1|item.id) + age.c + statement.direct.w * republican * (noGCPD.PartyVsKnowledge), data=belief.data, REML=FALSE, na.action = na.exclude, subset=variable=="avgdeviat" )
```
```{r echo=FALSE}
df1 = data.frame(summary(republican.omnibus.believer.model)$coefficients)
df1[1]
```
```{r echo=FALSE}
r.squaredGLMM(republican.omnibus.believer.model)[2]
```
```{r}
planCont = rbind(
# testing "noGCPD.PartyVsKnowledge"
"RQ1" = c(0, 0, 0, 0, 1, 0, 0, 0, 0),
# testing "statement.direct.w:noGCPD.PartyVsKnowledge"
"RQ1.2way" = c(0, 0, 0, 0, 0, 0, 1, 0, 0))
```
```{r echo=FALSE}
runContrasts(republican.omnibus.believer.model, planCont, "Republican/belief")
```
**Democrats**
**Descriptives of main variables:**
```{r echo=FALSE}
fromprep2 = subset( fromprep, endorse!="NC" & variable=="avgdeviat" & poliID2=="Democrat")
summt = dplyr::summarize(group_by(fromprep2,statement.direct,condition.belief),
mean=mean(value), se=sd(value)/sqrt(length(value)))
pander(summt)
```
```{r}
democrat.omnibus.believer.model <- lmer( dependent.variable ~ (1|group.id) + (1|item.id) + age.c + statement.direct.w * democrat * (noGCPD.PartyVsKnowledge), data=belief.data, REML=FALSE, na.action = na.exclude, subset=variable=="avgdeviat" )
```
```{r echo=FALSE}
df1 = data.frame(summary(democrat.omnibus.believer.model)$coefficients)
df1[1]
```
```{r echo=FALSE}
r.squaredGLMM(democrat.omnibus.believer.model)[2]
```
```{r}
planCont = rbind(
# testing "noGCPD.PartyVsKnowledge"
"RQ2" = c(0, 0, 0, 0, 1, 0, 0, 0, 0),
# testing "statement.direct.w:noGCPD.PartyVsKnowledge"
"RQ2.2way" = c(0, 0, 0, 0, 0, 0, 1, 0, 0))
```
```{r echo=FALSE}
runContrasts(democrat.omnibus.believer.model, planCont, "Democrat/belief")
```