-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathwllama.test.ts
307 lines (242 loc) · 8.39 KB
/
wllama.test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import { test, expect } from 'vitest';
import { Wllama, WllamaChatMessage } from './wllama';
const CONFIG_PATHS = {
'single-thread/wllama.wasm': '/src/single-thread/wllama.wasm',
'multi-thread/wllama.wasm': '/src/multi-thread/wllama.wasm',
};
const TINY_MODEL =
'https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories15M-q4_0.gguf';
const SPLIT_MODEL =
'https://huggingface.co/ngxson/tinyllama_split_test/resolve/main/stories15M-q8_0-00001-of-00003.gguf';
const EMBD_MODEL = TINY_MODEL; // for better speed
test.sequential('loads single model file', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(TINY_MODEL, {
n_ctx: 1024,
n_threads: 2,
});
expect(wllama.isModelLoaded()).toBe(true);
expect(wllama.getModelMetadata()).toBeDefined();
expect(wllama.getModelMetadata().hparams).toBeDefined();
expect(wllama.isMultithread()).toBe(true);
const metadata = wllama.getModelMetadata();
expect(metadata.hparams).toBeDefined();
expect(metadata.meta).toBeDefined();
await wllama.exit();
});
test.sequential('loads single model file from HF', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromHF(
'ggml-org/models',
'tinyllamas/stories15M-q4_0.gguf',
{
n_ctx: 1024,
n_threads: 2,
}
);
expect(wllama.isModelLoaded()).toBe(true);
await wllama.exit();
});
test.sequential('loads single thread model', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(TINY_MODEL, {
n_ctx: 1024,
n_threads: 1,
});
expect(wllama.isModelLoaded()).toBe(true);
expect(wllama.isMultithread()).toBe(false);
const completion = await wllama.createCompletion('Hello', { nPredict: 10 });
expect(completion).toBeDefined();
expect(completion.length).toBeGreaterThan(10);
await wllama.exit();
});
test.sequential('loads model with progress callback', async () => {
const wllama = new Wllama(CONFIG_PATHS);
let progressCalled = false;
let lastLoaded = 0;
await wllama.loadModelFromUrl(TINY_MODEL, {
n_ctx: 1024,
progressCallback: ({ loaded, total }) => {
expect(loaded).toBeGreaterThan(0);
expect(total).toBeGreaterThan(0);
expect(loaded).toBeLessThanOrEqual(total);
expect(loaded).toBeGreaterThanOrEqual(lastLoaded);
progressCalled = true;
lastLoaded = loaded;
},
});
expect(progressCalled).toBe(true);
expect(wllama.isModelLoaded()).toBe(true);
await wllama.exit();
});
test.sequential('loads split model files', async () => {
const wllama = new Wllama(CONFIG_PATHS, {
parallelDownloads: 5,
});
await wllama.loadModelFromUrl(SPLIT_MODEL, {
n_ctx: 1024,
});
expect(wllama.isModelLoaded()).toBe(true);
await wllama.exit();
});
test.sequential('tokenizes and detokenizes text', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(TINY_MODEL, {
n_ctx: 1024,
});
const text =
'Once Upon a Time is an American fantasy adventure drama television series';
const tokens = await wllama.tokenize(text);
expect(tokens.length).toBeGreaterThan(10);
const detokenized = await wllama.detokenize(tokens);
expect(detokenized.byteLength).toBeGreaterThan(10);
const decodedText = new TextDecoder().decode(detokenized);
expect(decodedText.trim()).toBe(text);
await wllama.exit();
});
test.sequential('generates completion', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(TINY_MODEL, {
n_ctx: 1024,
});
const config = {
seed: 42,
temp: 0.0,
top_p: 0.95,
top_k: 40,
};
await wllama.samplingInit(config);
const prompt = 'Once upon a time';
const completion = await wllama.createCompletion(prompt, {
nPredict: 10,
sampling: config,
});
expect(completion).toBeDefined();
expect(completion).toMatch(/(there|little|girl|Lily)+/);
expect(completion.length).toBeGreaterThan(10);
await wllama.exit();
});
test.sequential('gets logits', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(TINY_MODEL, {
n_ctx: 1024,
});
await wllama.samplingInit({});
const logits = await wllama.getLogits(10);
expect(logits.length).toBe(10);
expect(logits[0]).toHaveProperty('token');
expect(logits[0]).toHaveProperty('p');
expect(logits[0].token).toBeGreaterThan(0);
// expect(logits[0].p).toBeGreaterThan(0.5); // FIXME
await wllama.exit();
});
test.sequential('generates embeddings', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(EMBD_MODEL, {
n_ctx: 1024,
embeddings: true,
});
expect(wllama.isModelLoaded()).toBe(true);
const text = 'This is a test sentence';
const embedding = await wllama.createEmbedding(text);
expect(embedding).toBeDefined();
expect(Array.isArray(embedding)).toBe(true);
expect(embedding.length).toBeGreaterThan(0);
expect(typeof embedding[0]).toBe('number');
for (const e of embedding) {
expect(typeof e).toBe('number');
expect(e).toBeLessThan(1);
}
// make sure the vector is normalized
const normVec = Math.sqrt(embedding.reduce((acc, v) => acc + v * v, 0));
expect(Math.abs(normVec - 1)).toBeLessThan(1e-6);
// slightly different text should have different embedding
const embedding2 = await wllama.createEmbedding(text + ' ');
const cosineDist = embedding.reduce(
(acc, v, i) => acc + v * embedding2[i],
0
);
expect(cosineDist).toBeGreaterThan(1 - 0.05);
expect(cosineDist).toBeLessThan(1);
await wllama.exit();
});
test.sequential('allowOffline', async () => {
const wllama = new Wllama(CONFIG_PATHS, {
allowOffline: true,
});
// Mock fetch to simulate offline
const origFetch = window.fetch;
window.fetch = () => Promise.reject(new Error('offline'));
try {
await wllama.loadModelFromUrl(TINY_MODEL);
expect(wllama.isModelLoaded()).toBe(true);
await wllama.exit();
} catch (e) {
window.fetch = origFetch;
throw e;
} finally {
window.fetch = origFetch;
}
});
test.sequential('formatChat', async () => {
const wllama = new Wllama(CONFIG_PATHS, {
allowOffline: true,
});
await wllama.loadModelFromUrl(TINY_MODEL);
expect(wllama.isModelLoaded()).toBe(true);
const messages: WllamaChatMessage[] = [
{ role: 'system', content: 'You are helpful.' },
{ role: 'user', content: 'Hi!' },
{ role: 'assistant', content: 'Hello!' },
{ role: 'user', content: 'How are you?' },
];
const formatted = await wllama.formatChat(messages, false);
expect(formatted).toBe(
'<|im_start|>system\nYou are helpful.<|im_end|>\n<|im_start|>user\nHi!<|im_end|>\n<|im_start|>assistant\nHello!<|im_end|>\n<|im_start|>user\nHow are you?<|im_end|>\n'
);
const formatted1 = await wllama.formatChat(messages, true);
expect(formatted1).toBe(
'<|im_start|>system\nYou are helpful.<|im_end|>\n<|im_start|>user\nHi!<|im_end|>\n<|im_start|>assistant\nHello!<|im_end|>\n<|im_start|>user\nHow are you?<|im_end|>\n<|im_start|>assistant\n'
);
const formatted2 = await wllama.formatChat(messages, true, 'zephyr');
expect(formatted2).toBe(
'<|system|>\nYou are helpful.<|endoftext|>\n<|user|>\nHi!<|endoftext|>\n<|assistant|>\nHello!<|endoftext|>\n<|user|>\nHow are you?<|endoftext|>\n<|assistant|>\n'
);
await wllama.exit();
});
test.sequential('generates chat completion', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(TINY_MODEL, {
n_ctx: 1024,
});
const config = {
seed: 42,
temp: 0.0,
top_p: 0.95,
top_k: 40,
};
await wllama.samplingInit(config);
const messages: WllamaChatMessage[] = [
{ role: 'system', content: 'You are helpful.' },
{ role: 'user', content: 'Hi!' },
{ role: 'assistant', content: 'Hello!' },
{ role: 'user', content: 'How are you?' },
];
const completion = await wllama.createChatCompletion(messages, {
nPredict: 10,
sampling: config,
});
expect(completion).toBeDefined();
expect(completion).toMatch(/(Sudden|big|scary)+/);
expect(completion.length).toBeGreaterThan(10);
await wllama.exit();
});
test.sequential('cleans up resources', async () => {
const wllama = new Wllama(CONFIG_PATHS);
await wllama.loadModelFromUrl(TINY_MODEL);
expect(wllama.isModelLoaded()).toBe(true);
await wllama.exit();
await expect(wllama.tokenize('test')).rejects.toThrow();
// Double check that the model is really unloaded
expect(wllama.isModelLoaded()).toBe(false);
});