-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathactions.hpp
762 lines (720 loc) · 21.9 KB
/
actions.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#include <iostream>
#include <vector>
#include <string>
#include <sstream>
#include <stdio.h>
#include <cmath>
#include "llama.h"
#include "json.hpp"
#include "common.h"
#include "sampling.h"
/**
* CCAMA project - A low-level llama.cpp API via JSON
* https://github.com/ngxson/ccama
*/
using json = nlohmann::json;
#define LOG_JSON(str, ...) \
{ \
char output[1024]; \
sprintf(output, str.c_str(), __VA_ARGS__); \
send_response(json{{"debug" : std::string(output)}}); \
}
#define ACTION(name) \
if (action == #name) \
{ \
action_##name(app, body); \
continue; \
}
struct app_t
{
llama_model *model;
llama_context *ctx;
const llama_vocab *vocab;
common_sampler *ctx_sampling = nullptr;
llama_batch batch = llama_batch_init(512, 0, 1);
llama_tokens tokens;
int32_t seed = LLAMA_DEFAULT_SEED;
};
inline void send_response(json data)
{
std::cout << data.dump() << "\n";
}
inline std::vector<unsigned int> convert_string_to_int_arr(std::string &input)
{
std::vector<unsigned int> output;
unsigned char *input_ptr = (unsigned char *)input.data();
output.resize(input.length());
for (size_t i = 0; i < input.length(); i++)
{
output[i] = static_cast<unsigned int>(input_ptr[i]);
}
return std::move(output);
}
inline static ggml_type kv_cache_type_from_str(const std::string &s)
{
if (s == "f32")
return GGML_TYPE_F32;
if (s == "f16")
return GGML_TYPE_F16;
if (s == "q8_0")
return GGML_TYPE_Q8_0;
if (s == "q4_0")
return GGML_TYPE_Q4_0;
if (s == "q4_1")
return GGML_TYPE_Q4_1;
if (s == "q5_0")
return GGML_TYPE_Q5_0;
if (s == "q5_1")
return GGML_TYPE_Q5_1;
throw std::runtime_error("Invalid cache type: " + s);
}
inline static enum llama_pooling_type pooling_type_from_str(const std::string &s)
{
if (s == "LLAMA_POOLING_TYPE_UNSPECIFIED")
return LLAMA_POOLING_TYPE_UNSPECIFIED;
if (s == "LLAMA_POOLING_TYPE_NONE")
return LLAMA_POOLING_TYPE_NONE;
if (s == "LLAMA_POOLING_TYPE_MEAN")
return LLAMA_POOLING_TYPE_MEAN;
if (s == "LLAMA_POOLING_TYPE_CLS")
return LLAMA_POOLING_TYPE_CLS;
throw std::runtime_error("Invalid pooling type: " + s);
}
inline static llama_rope_scaling_type rope_scaling_type_from_str(const std::string &s)
{
if (s == "LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED")
return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
if (s == "LLAMA_ROPE_SCALING_TYPE_NONE")
return LLAMA_ROPE_SCALING_TYPE_NONE;
if (s == "LLAMA_ROPE_SCALING_TYPE_LINEAR")
return LLAMA_ROPE_SCALING_TYPE_LINEAR;
if (s == "LLAMA_ROPE_SCALING_TYPE_YARN")
return LLAMA_ROPE_SCALING_TYPE_YARN;
throw std::runtime_error("Invalid RoPE scaling type: " + s);
}
class app_exception : public std::exception
{
public:
app_exception(const std::string &msg) throw() : message(msg) {}
virtual ~app_exception() throw() {}
const char *what() const throw() { return message.c_str(); }
private:
std::string message;
};
void free_all(app_t &app)
{
if (app.ctx != nullptr)
llama_free(app.ctx);
if (app.model != nullptr)
llama_model_free(app.model);
if (app.ctx_sampling != nullptr)
common_sampler_free(app.ctx_sampling);
}
json dump_metadata(app_t &app)
{
json output;
int count = llama_model_meta_count(app.model);
std::string key;
std::string val;
std::vector<char> buf(1024);
int res = 0;
for (int i = 0; i < count; i++)
{
res = llama_model_meta_val_str_by_index(app.model, i, buf.data(), buf.size());
if (res < 0)
continue;
if (res > buf.size())
{
buf.resize(res + 1);
res = llama_model_meta_val_str_by_index(app.model, i, buf.data(), buf.size());
}
val = std::string(buf.data(), res);
res = llama_model_meta_key_by_index(app.model, i, buf.data(), buf.size());
if (res < 0)
continue;
if (res > buf.size())
{
buf.resize(res + 1);
res = llama_model_meta_key_by_index(app.model, i, buf.data(), buf.size());
}
key = std::string(buf.data(), res);
output[key] = val;
}
return output;
}
//////////////////////////////////////////
//////////////////////////////////////////
//////////////////////////////////////////
json action_load(app_t &app, json &body)
{
free_all(app);
std::string model_path = body["model_path"];
bool n_ctx_auto = body.contains("n_ctx_auto") ? body.at("n_ctx_auto").get<bool>() : false;
auto mparams = llama_model_default_params();
if (body.contains("use_mmap"))
mparams.use_mmap = body["use_mmap"];
if (body.contains("use_mlock"))
mparams.use_mlock = body["use_mlock"];
if (body.contains("n_gpu_layers"))
mparams.n_gpu_layers = body["n_gpu_layers"];
auto cparams = llama_context_default_params();
app.seed = body["seed"];
cparams.n_ctx = body["n_ctx"];
cparams.n_threads = body["n_threads"];
cparams.n_threads_batch = cparams.n_threads;
if (body.contains("embeddings"))
cparams.embeddings = body["embeddings"];
if (body.contains("offload_kqv"))
cparams.offload_kqv = body["offload_kqv"];
if (body.contains("n_batch"))
cparams.n_batch = body["n_batch"];
if (body.contains("n_seq_max"))
cparams.n_seq_max = body["n_seq_max"];
if (body.contains("pooling_type"))
cparams.pooling_type = pooling_type_from_str(body["pooling_type"]);
// context extending: https://github.com/ggerganov/llama.cpp/pull/2054
if (body.contains("rope_scaling_type"))
cparams.rope_scaling_type = rope_scaling_type_from_str(body["rope_scaling_type"]);
if (body.contains("rope_freq_base"))
cparams.rope_freq_base = body["rope_freq_base"];
if (body.contains("rope_freq_scale"))
cparams.rope_freq_scale = body["rope_freq_scale"];
if (body.contains("yarn_ext_factor"))
cparams.yarn_ext_factor = body["yarn_ext_factor"];
if (body.contains("yarn_attn_factor"))
cparams.yarn_attn_factor = body["yarn_attn_factor"];
if (body.contains("yarn_beta_fast"))
cparams.yarn_beta_fast = body["yarn_beta_fast"];
if (body.contains("yarn_beta_slow"))
cparams.yarn_beta_slow = body["yarn_beta_slow"];
if (body.contains("yarn_orig_ctx"))
cparams.yarn_orig_ctx = body["yarn_orig_ctx"];
// optimizations
if (body.contains("cache_type_k"))
cparams.type_k = kv_cache_type_from_str(body["cache_type_k"]);
if (body.contains("cache_type_v"))
cparams.type_k = kv_cache_type_from_str(body["cache_type_v"]);
app.model = llama_model_load_from_file(model_path.c_str(), mparams);
if (app.model == nullptr)
{
free_all(app);
throw app_exception("Error while loading model");
}
app.vocab = llama_model_get_vocab(app.model);
for (; cparams.n_ctx > 0; cparams.n_ctx -= 1024)
{
app.ctx = llama_init_from_model(app.model, cparams);
if (app.ctx != nullptr)
{
break; // OK
}
if (!n_ctx_auto)
{
free_all(app);
throw app_exception("Error while creating llama_context model");
}
else
{
std::cerr << "llama_context == nullptr, Retrying with n_ctx = " << cparams.n_ctx;
continue;
}
}
if (cparams.n_ctx < 0)
{
free_all(app);
throw app_exception("Out of memory, cannot create llama_context model");
}
llama_batch_free(app.batch);
app.batch = llama_batch_init(cparams.n_batch, 0, 1);
auto decoder_start_token = llama_model_decoder_start_token(app.model);
if (decoder_start_token < 0)
{
decoder_start_token = llama_vocab_bos(app.vocab);
}
int n_vocab = llama_vocab_n_tokens(app.vocab);
llama_tokens list_tokens_eog;
for (int i = 0; i < n_vocab; i++)
{
if (llama_vocab_is_eog(app.vocab, i))
{
list_tokens_eog.push_back(i);
}
}
return json{
{"success", true},
{"n_ctx", cparams.n_ctx},
{"n_batch", llama_n_batch(app.ctx)},
{"n_ubatch", llama_n_ubatch(app.ctx)},
{"n_vocab", n_vocab},
{"n_ctx_train", llama_model_n_ctx_train(app.model)},
{"n_embd", llama_model_n_embd(app.model)},
{"n_layer", llama_model_n_layer(app.model)},
{"metadata", dump_metadata(app)},
{"token_bos", llama_vocab_bos(app.vocab)},
{"token_eos", llama_vocab_eos(app.vocab)},
{"token_eot", llama_vocab_eot(app.vocab)},
{"list_tokens_eog", list_tokens_eog},
{"add_bos_token", llama_vocab_get_add_bos(app.vocab) == 1},
{"add_eos_token", llama_vocab_get_add_eos(app.vocab) == 1},
{"has_encoder", llama_model_has_encoder(app.model)},
{"token_decoder_start", llama_model_decoder_start_token(app.model)},
};
}
// set various options at runtime (after loading model)
json action_set_options(app_t &app, json &body)
{
bool embeddings = body["embeddings"];
if (embeddings)
{
llama_set_embeddings(app.ctx, true);
llama_set_causal_attn(app.ctx, false);
}
else
{
llama_set_embeddings(app.ctx, false);
llama_set_causal_attn(app.ctx, true);
}
return json{{"success", true}};
}
// init (or re-init) sampling context
json action_sampling_init(app_t &app, json &body)
{
// sampling
common_params_sampling sparams;
sparams.seed = app.seed;
if (sparams.seed == LLAMA_DEFAULT_SEED)
sparams.seed = time(NULL);
if (body.contains("mirostat"))
sparams.mirostat = body["mirostat"];
if (body.contains("mirostat_tau"))
sparams.mirostat_tau = body["mirostat_tau"];
if (body.contains("mirostat_eta"))
sparams.mirostat_eta = body["mirostat_eta"];
if (body.contains("temp"))
sparams.temp = body["temp"];
if (body.contains("top_p"))
sparams.top_p = body["top_p"];
if (body.contains("top_k"))
sparams.top_k = body["top_k"];
if (body.contains("penalty_last_n"))
sparams.penalty_last_n = body["penalty_last_n"];
if (body.contains("penalty_repeat"))
sparams.penalty_repeat = body["penalty_repeat"];
if (body.contains("penalty_freq"))
sparams.penalty_freq = body["penalty_freq"];
if (body.contains("penalty_present"))
sparams.penalty_present = body["penalty_present"];
if (body.contains("dynatemp_range"))
sparams.dynatemp_range = body["dynatemp_range"];
if (body.contains("dynatemp_exponent"))
sparams.dynatemp_exponent = body["dynatemp_exponent"];
// if (body.contains("samplers_sequence"))
// sparams.samplers_sequence = body["samplers_sequence"];
if (body.contains("grammar"))
sparams.grammar = body["grammar"];
if (body.contains("n_prev"))
sparams.n_prev = body["n_prev"];
if (body.contains("n_probs"))
sparams.n_probs = body["n_probs"];
if (body.contains("min_p"))
sparams.min_p = body["min_p"];
if (body.contains("typical_p")) // for compat
sparams.typ_p = body["typical_p"];
if (body.contains("typ_p"))
sparams.typ_p = body["typ_p"];
// logit bias
if (body.contains("logit_bias"))
{
std::vector<json> logit_bias = body["logit_bias"];
for (json &item : logit_bias)
{
llama_token token = item["token"];
float bias = item["bias"];
sparams.logit_bias.push_back({token, bias});
}
}
// maybe free before creating a new one
if (app.ctx_sampling != nullptr)
{
common_sampler_free(app.ctx_sampling);
}
app.ctx_sampling = common_sampler_init(app.model, sparams);
if (body.contains("tokens"))
{
llama_tokens tokens = body["tokens"];
for (auto id : tokens)
{
common_sampler_accept(app.ctx_sampling, id, false);
}
}
return json{{"success", true}};
}
// get map token ID to vocab (be careful, it is slow!)
json action_get_vocab(app_t &app, json &body)
{
int32_t max_tokens = llama_vocab_n_tokens(app.vocab);
std::vector<std::vector<unsigned int>> vocab(max_tokens);
for (int32_t id = 0; id < max_tokens; id++)
{
std::string token_as_str = common_token_to_piece(app.ctx, id);
vocab[id] = convert_string_to_int_arr(token_as_str);
}
return json{
{"success", true},
{"vocab", vocab},
};
}
// lookup single token (also be able to check if it exists or not)
json action_lookup_token(app_t &app, json &body)
{
std::string piece = body["piece"];
int32_t max_tokens = llama_vocab_n_tokens(app.vocab);
for (int32_t id = 0; id < max_tokens; id++)
{
std::string token_as_str = common_token_to_piece(app.ctx, id);
if (token_as_str == piece)
{
return json{
{"success", true},
{"token", id},
};
}
}
// not found
return json{{"success", false}};
}
// tokenize an input string
json action_tokenize(app_t &app, json &body)
{
std::string text = body["text"];
bool special = body.contains("special");
llama_tokens tokens_list;
tokens_list = common_tokenize(app.vocab, text, false, special);
return json{
{"success", true},
{"tokens", tokens_list},
};
}
// detokenize a list of tokens
json action_detokenize(app_t &app, json &body)
{
llama_tokens tokens = body["tokens"];
std::stringstream output;
for (auto id : tokens)
{
output << common_token_to_piece(app.ctx, id);
}
std::string parsed_str = output.str();
return json{
{"success", true},
{"buffer", convert_string_to_int_arr(parsed_str)},
};
}
// decode an array of tokens
json action_decode(app_t &app, json &body)
{
llama_tokens tokens_list = body["tokens"];
bool skip_logits = body.contains("skip_logits")
? body.at("skip_logits").get<bool>()
: false;
size_t i = 0;
common_batch_clear(app.batch);
for (auto id : tokens_list)
{
bool grp_attn_enabled = false; // TODO: maybe remove grp_attn
int32_t n_past = app.tokens.size();
common_batch_add(app.batch, id, n_past, {0}, false);
app.tokens.push_back(id);
i++;
}
// llama_decode will output logits only for the last token of the prompt
if (!skip_logits)
{
app.batch.logits[app.batch.n_tokens - 1] = true;
}
if (llama_decode(app.ctx, app.batch) != 0)
{
return json{{"error", "llama_decode failed, maybe n_batch is too small?"}};
}
else
{
return json{
{"success", true},
{"n_past", app.tokens.size()},
};
}
}
// encode an array of tokens
json action_encode(app_t &app, json &body)
{
llama_tokens tokens_list = body["tokens"];
if (!llama_model_has_encoder(app.model))
{
return json{{"error", "this model does not have an encoder"}};
}
size_t n_past = 0;
common_batch_clear(app.batch);
for (auto id : tokens_list)
{
common_batch_add(app.batch, id, n_past, {0}, false);
n_past++;
}
if (llama_encode(app.ctx, app.batch) != 0)
{
return json{{"error", "llama_encode failed, maybe n_batch is too small?"}};
}
else
{
return json{
{"success", true},
{"n_past", n_past},
};
}
}
// decode the current logits and sample the new token
json action_sampling_sample(app_t &app, json &body)
{
int32_t idx = app.batch.n_tokens - 1;
const llama_token new_token_id = common_sampler_sample(app.ctx_sampling, app.ctx, idx, false);
std::string piece = common_token_to_piece(app.ctx, new_token_id);
return json{
{"success", true},
{"piece", convert_string_to_int_arr(piece)},
{"token", new_token_id},
};
}
// accept this token
json action_sampling_accept(app_t &app, json &body)
{
llama_tokens tokens_list = body["tokens"];
for (auto id : tokens_list)
{
common_sampler_accept(app.ctx_sampling, id, false);
}
return json{{"success", true}};
}
// get softmax-ed probability of logits, can be used for custom sampling. The output is always sorted
json action_get_logits(app_t &app, json &body)
{
int top_k = body["top_k"]; // if is -1, we take all logits (will be slow!)
int32_t idx = app.batch.n_tokens - 1;
float *logits = llama_get_logits_ith(app.ctx, idx);
int32_t n_vocab = llama_vocab_n_tokens(app.vocab);
auto sort_fn = [](llama_token_data &a, llama_token_data &b) -> bool
{
return b.logit < a.logit;
};
// get all candidates and sort
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
float sum = 0.0f; // for softmax
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
{
float exp_val = exp(logits[token_id]);
candidates.emplace_back(llama_token_data{token_id, logits[token_id], exp_val});
sum += exp_val;
}
for (auto &c : candidates)
{
c.p /= sum; // calculate softmax
}
std::sort(candidates.begin(), candidates.end(), sort_fn);
if (top_k >= 0)
{
candidates.erase(candidates.begin() + top_k, candidates.end());
}
// convert response to json
std::vector<json> output;
output.reserve(candidates.size());
for (auto &c : candidates)
{
output.emplace_back(json{c.id, c.p});
}
return json{
{"success", true},
{"logits", output},
};
}
// get embeddings, this will call action_decode internally
json action_embeddings(app_t &app, json &body)
{
llama_tokens tokens_list = body["tokens"];
// allocate output
const int n_embd = llama_model_n_embd(app.model);
std::vector<float> embeddings(n_embd, 0); // single seq
float *out = embeddings.data();
// decode
json req = json{{"tokens", tokens_list}};
json res = action_decode(app, req);
if (res.contains("error"))
{
return res;
}
int32_t idx = app.batch.n_tokens - 1;
const float *embd = llama_get_embeddings_seq(app.ctx, 0);
if (embd == NULL)
{
embd = llama_get_embeddings_ith(app.ctx, idx);
if (embd == NULL)
{
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, idx);
return json{{"error", "failed to get embeddings"}};
}
}
common_embd_normalize(embd, out, n_embd, 2);
return json{
{"success", true},
{"embeddings", embeddings},
};
}
// remove tokens in kv, for context-shifting
json action_kv_remove(app_t &app, json &body)
{
const int n_keep = body["n_keep"];
const int n_discard = body["n_discard"];
const int n_past = app.tokens.size();
llama_kv_cache_seq_rm(app.ctx, 0, n_keep, n_keep + n_discard);
llama_kv_cache_seq_add(app.ctx, 0, n_keep + n_discard, n_past, -n_discard);
app.tokens.erase(
app.tokens.begin() + n_keep,
app.tokens.begin() + n_keep + n_discard);
return json{
{"success", true},
{"n_past", app.tokens.size()},
};
}
// clear all tokens in kv
json action_kv_clear(app_t &app, json &body)
{
llama_kv_cache_clear(app.ctx);
app.tokens.clear();
return json{
{"success", true},
{"n_past", app.tokens.size()},
};
}
// save current session
json action_session_save(app_t &app, json &body)
{
std::string session_path = body["session_path"];
llama_tokens dummy;
if (!llama_state_seq_save_file(
app.ctx,
session_path.c_str(),
0, // seq_id
dummy.data(), // tokens
dummy.size() // n_token_count
))
{
return json{{"error", "action_session_save failed"}};
}
return json{
{"success", true},
{"tokens", app.tokens},
};
}
// load a session from disk
json action_session_load(app_t &app, json &body)
{
std::string session_path = body["session_path"];
llama_tokens saved_tokens = body["tokens"];
auto n_ctx = llama_n_ctx(app.ctx);
size_t n_token_count_out = 0;
llama_tokens dummy;
if (!llama_state_seq_load_file(
app.ctx,
session_path.c_str(),
0, // dest_seq_id
dummy.data(), // tokens_out
dummy.capacity(), // n_token_capacity
&n_token_count_out // n_token_count_out
))
{
return json{{"error", "llama_load_session_file failed"}};
}
// load tokens
app.tokens.clear();
app.tokens.reserve(saved_tokens.size());
for (auto id : saved_tokens)
{
app.tokens.push_back(id);
}
return json{{"success", true}};
}
// get the current status
json action_current_status(app_t &app, json &body)
{
return json{
{"success", true},
{"tokens", app.tokens},
};
}
//////////////////////////////////////////
// because we can't support jinja for now, we temporary use an old version of common_chat_apply_template
// TODO: support jinja
std::string common_chat_apply_template_old(const struct llama_model *model,
const std::string &tmpl,
const std::vector<common_chat_msg> &msgs,
bool add_ass)
{
int alloc_size = 0;
bool fallback = false; // indicate if we must fallback to default chatml
std::vector<llama_chat_message> chat;
for (const auto &msg : msgs)
{
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
const char *ptr_tmpl = tmpl.empty() ? llama_model_chat_template(model, nullptr) : tmpl.c_str();
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// error: chat template is not supported
if (res < 0)
{
if (ptr_tmpl != nullptr)
{
throw std::runtime_error("this custom template is not supported");
}
// If the built-in template is not supported, we default to chatml
res = llama_chat_apply_template("chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
fallback = true;
}
// if it turns out that our buffer is too small, we resize it
if ((size_t)res > buf.size())
{
buf.resize(res);
res = llama_chat_apply_template(
fallback ? "chatml" : ptr_tmpl,
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
// apply chat template
json action_chat_format(app_t &app, json &body)
{
std::string tmpl = body.contains("tmpl") ? body["tmpl"] : "";
bool add_ass = body.contains("add_ass") ? body.at("add_ass").get<bool>() : false;
if (!body.contains("messages"))
{
return json{{"error", "messages is required"}};
}
std::vector<common_chat_msg> chat;
for (auto &item : body["messages"])
{
chat.push_back({item["role"], item["content"]});
}
try
{
std::string formatted_chat = common_chat_apply_template_old(app.model, tmpl, chat, add_ass);
return json{
{"success", true},
{"formatted_chat", formatted_chat},
};
}
catch (const std::exception &e)
{
return json{{"error", e.what()}};
}
}