-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathacl_compressor.py
1040 lines (848 loc) · 48.7 KB
/
acl_compressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import multiprocessing
import numpy
import os
import platform
import queue
import threading
import time
import signal
import sys
from itertools import chain
# This script depends on a SJSON parsing package:
# https://pypi.python.org/pypi/SJSON/1.1.0
# https://shelter13.net/projects/SJSON/
# https://bitbucket.org/Anteru/sjson/src
import sjson
def parse_argv():
options = {}
options['acl'] = ""
options['stats'] = ""
options['out'] = ""
options['csv_summary'] = False
options['csv_bit_rate'] = False
options['csv_animated_size'] = False
options['csv_error'] = False
options['refresh'] = False
options['num_threads'] = 1
options['has_progress_bar'] = True
options['stat_detailed'] = False
options['stat_exhaustive'] = False
options['level'] = 'Medium'
options['strip_keyframe_proportion'] = None
options['strip_keyframe_threshold'] = None
options['print_help'] = False
for i in range(1, len(sys.argv)):
value = sys.argv[i]
# TODO: Strip trailing '/' or '\'
if value.startswith('-acl='):
options['acl'] = value[len('-acl='):].replace('"', '')
options['acl'] = os.path.expanduser(options['acl'])
if value.startswith('-stats='):
options['stats'] = value[len('-stats='):].replace('"', '')
options['stats'] = os.path.expanduser(options['stats'])
if value.startswith('-out='):
options['out'] = value[len('-out='):].replace('"', '')
options['out'] = os.path.expanduser(options['out'])
if value == '-csv_summary':
options['csv_summary'] = True
if value == '-csv_bit_rate':
options['csv_bit_rate'] = True
if value == '-csv_animated_size':
options['csv_animated_size'] = True
if value == '-csv_error':
options['csv_error'] = True
if value == '-refresh':
options['refresh'] = True
if value == '-no_progress_bar':
options['has_progress_bar'] = False
if value == '-stat_detailed':
options['stat_detailed'] = True
if value == '-stat_exhaustive':
options['stat_exhaustive'] = True
if value.startswith('-parallel='):
options['num_threads'] = int(value[len('-parallel='):].replace('"', ''))
if value.startswith('-level='):
options['level'] = value[len('-level='):].replace('"', '')
if value.startswith('-strip_keyframe_proportion='):
options['strip_keyframe_proportion'] = float(value[len('-strip_keyframe_proportion='):].replace('"', ''))
if value.startswith('-strip_keyframe_threshold='):
options['strip_keyframe_threshold'] = float(value[len('-strip_keyframe_threshold='):].replace('"', ''))
if value == '-help':
options['print_help'] = True
if options['print_help']:
print_help()
sys.exit(1)
if len(options['acl']) == 0:
print('ACL input directory not found')
print_usage()
sys.exit(1)
if len(options['stats']) == 0:
print('Stat output directory not found')
print_usage()
sys.exit(1)
if options['num_threads'] <= 0:
print('-parallel switch argument must be greater than 0')
print_usage()
sys.exit(1)
if not os.path.exists(options['acl']) or not os.path.isdir(options['acl']):
print('ACL input directory not found: {}'.format(options['acl']))
print_usage()
sys.exit(1)
if not os.path.exists(options['stats']):
os.makedirs(options['stats'])
if not os.path.isdir(options['stats']):
print('The output stat argument must be a directory')
print_usage()
sys.exit(1)
return options
def print_usage():
print('Usage: python acl_compressor.py -acl=<path to directory containing ACL files> -stats=<path to output directory for stats> [-csv_summary] [-csv_bit_rate] [-csv_animated_size] [-csv_error] [-refresh] [-parallel={Num Threads}] [-help]')
def print_help():
print('Usage: python acl_compressor.py [arguments]')
print()
print('Arguments:')
print(' At least one argument must be provided.')
print(' -acl=<path>: Input directory tree containing clips to compress.')
print(' -stats=<path>: Output directory tree for the stats to output.')
print(' -out=<path>: Output directory tree for the compressed binaries to output.')
print(' -csv_summary: Generates a basic summary CSV file with various clip information and statistics.')
print(' -csv_bit_rate: Generates a CSV with the bit rate usage frequency by the variable quantization algorithm. The executable must be compiled with detailed statistics enabled.')
print(' -csv_animated_size: Generates a CSV with statistics about the animated size of key frames. The executable must be compiled with detailed statistics enabled.')
print(' -csv_error: Generates a CSV with the error for every bone at every key frame. The executable must be compiled with exhaustive statistics enabled.')
print(' -refresh: If an output stat file already exists for a particular clip, it is recompressed anyway instead of being skipped.')
print(' -parallel=<Num Threads>: Allows multiple clips to be compressed and processed in parallel.')
print(' -no_progress_bar: Suppresses the progress bar output')
print(' -stat_detailed: Enables detailed stat logging')
print(' -stat_exhaustive: Enables exhaustive stat logging')
print(' -strip_keyframe_proportion: Enables keyframe stripping and sets the desired strip proportion')
print(' -strip_keyframe_threshold: Enables keyframe stripping and sets the desired strip threshold')
print(' -help: Prints this help message.')
def print_stat(stat):
print('Algorithm: {}, Format: [{}], Ratio: {:.2f}, Error: {:.4f}'.format(stat['algorithm_name'], stat['desc'], stat['compression_ratio'], stat['max_error']))
print('')
def bytes_to_mb(size_in_bytes):
return size_in_bytes / (1024.0 * 1024.0)
def bytes_to_kb(size_in_bytes):
return size_in_bytes / 1024.0
def format_elapsed_time(elapsed_time):
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
return '{:0>2}h {:0>2}m {:05.2f}s'.format(int(hours), int(minutes), seconds)
def sanitize_csv_entry(entry):
return entry.replace(', ', ' ').replace(',', '_')
def create_csv(options):
csv_data = {}
stat_dir = options['stats']
if options['csv_summary']:
stats_summary_csv_filename = os.path.join(stat_dir, 'stats_summary.csv')
stats_summary_csv_file = open(stats_summary_csv_filename, 'w')
csv_data['stats_summary_csv_file'] = stats_summary_csv_file
print('Generating CSV file {} ...'.format(stats_summary_csv_filename))
print('Clip Name,Algorithm Name,Raw Size,Compressed Size,Compression Ratio,Compression Time,Clip Duration,Num Animated Tracks,Max Error,Num Transforms,Num Samples Per Track,Quantization Memory Usage,Is Looping,Num Trivial Keyframes,Longest Transform Chain', file = stats_summary_csv_file)
if options['csv_bit_rate']:
stats_bit_rate_csv_filename = os.path.join(stat_dir, 'stats_bit_rate.csv')
stats_bit_rate_csv_file = open(stats_bit_rate_csv_filename, 'w')
csv_data['stats_bit_rate_csv_file'] = stats_bit_rate_csv_file
print('Generating CSV file {} ...'.format(stats_bit_rate_csv_filename))
print('Algorithm Name,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,32', file = stats_bit_rate_csv_file)
if options['csv_animated_size']:
stats_animated_size_csv_filename = os.path.join(stat_dir, 'stats_animated_size.csv')
stats_animated_size_csv_file = open(stats_animated_size_csv_filename, 'w')
csv_data['stats_animated_size_csv_file'] = stats_animated_size_csv_file
print('Generating CSV file {} ...'.format(stats_animated_size_csv_filename))
print('Algorithm Name,Segment Index,Animated Size,Num Animated Tracks', file = stats_animated_size_csv_file)
if options['csv_error']:
stats_error_csv_filename = os.path.join(stat_dir, 'stats_error.csv')
stats_error_csv_file = open(stats_error_csv_filename, 'w')
csv_data['stats_error_csv_file'] = stats_error_csv_file
print('Generating CSV file {} ...'.format(stats_error_csv_filename))
print('Clip Name,Key Frame,Bone Index,Error', file = stats_error_csv_file)
return csv_data
def close_csv(csv_data):
if len(csv_data) == 0:
return
if 'stats_summary_csv_file' in csv_data:
csv_data['stats_summary_csv_file'].close()
if 'stats_bit_rate_csv_file' in csv_data:
csv_data['stats_bit_rate_csv_file'].close()
if 'stats_animated_size_csv_file' in csv_data:
csv_data['stats_animated_size_csv_file'].close()
if 'stats_error_csv_file' in csv_data:
csv_data['stats_error_csv_file'].close()
def append_csv(csv_data, job_data):
if 'stats_summary_csv_file' in csv_data:
data = job_data['stats_summary_data']
for (clip_name, algo_name, \
raw_size, compressed_size, compression_ratio, compression_time, \
duration, num_animated_tracks, max_error, num_transforms, num_samples_per_track, \
quantization_memory_usage, is_looping, num_trivial_keyframes, longest_chain_length) in data:
print('{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}'.format(clip_name, algo_name, \
raw_size, compressed_size, compression_ratio, compression_time, \
duration, num_animated_tracks, max_error, num_transforms, num_samples_per_track, \
quantization_memory_usage, is_looping, num_trivial_keyframes, longest_chain_length), file = csv_data['stats_summary_csv_file'])
if 'stats_animated_size_csv_file' in csv_data:
size_data = job_data['stats_animated_size']
for (name, segment_index, animated_size, num_animated) in size_data:
print('{},{},{},{}'.format(name, segment_index, animated_size, num_animated), file = csv_data['stats_animated_size_csv_file'])
if 'stats_error_csv_file' in csv_data:
error_data = job_data['stats_error_data']
for (name, segment_index, data) in error_data:
key_frame = 0
for frame_errors in data:
bone_index = 0
for bone_error in frame_errors:
print('{},{},{},{}'.format(name, key_frame, bone_index, bone_error), file = csv_data['stats_error_csv_file'])
bone_index += 1
key_frame += 1
def write_csv(csv_data, agg_data):
if 'stats_bit_rate_csv_file' in csv_data:
for algorithm_uid, algo_data in agg_data.items():
total_count = float(sum(algo_data['bit_rates']))
if total_count <= 0.0:
inv_total_count = 0.0 # Clamp to zero if a bit rate isn't used
else:
inv_total_count = 1.0 / total_count
print('{}, {}'.format(algo_data['csv_name'], ', '.join([str((float(x) * inv_total_count) * 100.0) for x in algo_data['bit_rates']])), file = csv_data['stats_bit_rate_csv_file'])
def print_progress(iteration, total, prefix='', suffix='', decimals = 1, bar_length = 40):
# Taken from https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console
# With minor tweaks
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
bar_length - Optional : character length of bar (Int)
"""
str_format = "{0:." + str(decimals) + "f}"
percents = str_format.format(100 * (iteration / float(total)))
filled_length = int(round(bar_length * iteration / float(total)))
bar = '█' * filled_length + '-' * (bar_length - filled_length)
# We need to clear any previous line we might have to ensure we have no visual artifacts
# Note that if this function is called too quickly, the text might flicker
terminal_width = 80
sys.stdout.write('{}\r'.format(' ' * terminal_width))
sys.stdout.flush()
sys.stdout.write('%s |%s| %s%s %s\r' % (prefix, bar, percents, '%', suffix)),
sys.stdout.flush()
if iteration == total:
sys.stdout.write('\n')
def run_acl_compressor(cmd_queue, result_queue):
while True:
entry = cmd_queue.get()
if entry is None:
return
(acl_filename, cmd) = entry
result = os.system(cmd)
if result != 0:
print('Failed to execute cmd: {}'.format(cmd))
result_queue.put(acl_filename)
def compress_clips(options):
acl_dir = options['acl']
stat_dir = options['stats']
if platform.system() == 'Windows':
stat_dir = '\\\\?\\{}'.format(stat_dir)
refresh = options['refresh']
if platform.system() == 'Windows':
compressor_exe_path = '../../build/bin/acl_compressor.exe'
else:
compressor_exe_path = '../../build/bin/acl_compressor'
compressor_exe_path = os.path.abspath(compressor_exe_path)
if not os.path.exists(compressor_exe_path):
print('Compressor exe not found: {}'.format(compressor_exe_path))
sys.exit(1)
stat_files = []
cmd_queue = queue.Queue()
out_dir = None
if len(options['out']) != 0:
if not os.path.exists(options['out']):
os.makedirs(options['out'])
if os.path.exists(options['out']) and os.path.isdir(options['out']):
out_dir = options['out']
for (dirpath, dirnames, filenames) in os.walk(acl_dir):
stat_dirname = dirpath.replace(acl_dir, stat_dir)
for filename in filenames:
if not (filename.endswith('.acl.sjson') or filename.endswith('.acl')):
continue
acl_filename = os.path.join(dirpath, filename)
if filename.endswith('.acl.sjson'):
stat_filename = os.path.join(stat_dirname, filename.replace('.acl.sjson', '_stats.sjson'))
else:
stat_filename = os.path.join(stat_dirname, filename.replace('.acl', '_stats.sjson'))
stat_files.append(stat_filename)
if os.path.exists(stat_filename) and os.path.isfile(stat_filename) and not refresh:
continue
if not os.path.exists(stat_dirname):
os.makedirs(stat_dirname)
stat_filename = stat_filename.replace('\\\\?\\', '')
cmd = '{} -acl="{}" -stats="{}" -level={}'.format(compressor_exe_path, acl_filename, stat_filename, options['level'])
if out_dir:
if filename.endswith('.acl.sjson'):
out_filename = os.path.join(options['out'], filename.replace('.acl.sjson', '.acl'))
else:
out_filename = os.path.join(options['out'], filename)
cmd = '{} -out="{}"'.format(cmd, out_filename)
if options['stat_detailed']:
cmd = '{} -stat_detailed'.format(cmd)
if options['stat_exhaustive']:
cmd = '{} -stat_exhaustive'.format(cmd)
if options['strip_keyframe_proportion']:
cmd = '{} -strip_keyframe_proportion={}'.format(cmd, options['strip_keyframe_proportion'])
if options['strip_keyframe_threshold']:
cmd = '{} -strip_keyframe_threshold={}'.format(cmd, options['strip_keyframe_threshold'])
if platform.system() == 'Windows':
cmd = cmd.replace('/', '\\')
cmd_queue.put((acl_filename, cmd))
if len(stat_files) == 0:
print("No ACL clips found to compress")
sys.exit(0)
if not cmd_queue.empty():
# Add a marker to terminate the threads
for i in range(options['num_threads']):
cmd_queue.put(None)
result_queue = queue.Queue()
compression_start_time = time.perf_counter()
threads = [ threading.Thread(target = run_acl_compressor, args = (cmd_queue, result_queue)) for _i in range(options['num_threads']) ]
for thread in threads:
thread.daemon = True
thread.start()
if options['has_progress_bar']:
print_progress(0, len(stat_files), 'Compressing clips:', '{} / {}'.format(0, len(stat_files)))
try:
while True:
for thread in threads:
thread.join(1.0)
num_processed = result_queue.qsize()
if options['has_progress_bar']:
print_progress(num_processed, len(stat_files), 'Compressing clips:', '{} / {}'.format(num_processed, len(stat_files)))
all_threads_done = True
for thread in threads:
if thread.is_alive():
all_threads_done = False
if all_threads_done:
break
except KeyboardInterrupt:
sys.exit(1)
compression_end_time = time.perf_counter()
print()
print('Compressed {} clips in {}'.format(len(stat_files), format_elapsed_time(compression_end_time - compression_start_time)))
return stat_files
def shorten_rotation_format(format):
if format == 'quatf_full':
return 'R:Quat'
elif format == 'quatf_drop_w_full':
return 'R:QuatNoW96'
elif format == 'QuatDropW_48':
return 'R:QuatNoW48'
elif format == 'QuatDropW_32':
return 'R:QuatNoW32'
elif format == 'quatf_drop_w_variable':
return 'R:QuatNoWVar'
else:
return 'R:???'
def shorten_translation_format(format):
if format == 'vector3f_full':
return 'T:Vec3_96'
elif format == 'Vector3_48':
return 'T:Vec3_48'
elif format == 'Vector3_32':
return 'T:Vec3_32'
elif format == 'vector3f_variable':
return 'T:Vec3Var'
else:
return 'T:???'
def shorten_scale_format(format):
if format == 'vector3f_full':
return 'S:Vec3_96'
elif format == 'Vector3_48':
return 'S:Vec3_48'
elif format == 'Vector3_32':
return 'S:Vec3_32'
elif format == 'vector3f_variable':
return 'S:Vec3Var'
else:
return 'S:???'
def aggregate_stats(agg_run_stats, run_stats):
algorithm_uid = run_stats['algorithm_uid']
if not algorithm_uid in agg_run_stats:
agg_data = {}
agg_data['name'] = run_stats['desc']
agg_data['csv_name'] = run_stats['csv_desc']
agg_data['total_raw_size'] = 0
agg_data['total_compressed_size'] = 0
agg_data['total_compression_time'] = 0.0
agg_data['total_duration'] = 0.0
agg_data['max_error'] = 0
agg_data['num_runs'] = 0
agg_data['bit_rates'] = [0] * 25
agg_data['compressed_size'] = []
# Detailed stats
agg_data['num_segments'] = []
agg_data['num_default_rotation_tracks'] = []
agg_data['num_default_translation_tracks'] = []
agg_data['num_default_scale_tracks'] = []
agg_data['num_constant_rotation_tracks'] = []
agg_data['num_constant_translation_tracks'] = []
agg_data['num_constant_scale_tracks'] = []
agg_data['num_animated_rotation_tracks'] = []
agg_data['num_animated_translation_tracks'] = []
agg_data['num_animated_scale_tracks'] = []
agg_data['num_default_tracks'] = []
agg_data['num_constant_tracks'] = []
agg_data['num_animated_tracks'] = []
agg_data['clip_header_size'] = []
agg_data['clip_metadata_common_size'] = []
agg_data['clip_metadata_rotation_constant_size'] = []
agg_data['clip_metadata_translation_constant_size'] = []
agg_data['clip_metadata_scale_constant_size'] = []
agg_data['clip_metadata_rotation_animated_size'] = []
agg_data['clip_metadata_translation_animated_size'] = []
agg_data['clip_metadata_scale_animated_size'] = []
agg_data['segment_metadata_common_size'] = []
agg_data['segment_metadata_rotation_size'] = []
agg_data['segment_metadata_translation_size'] = []
agg_data['segment_metadata_scale_size'] = []
agg_data['segment_animated_rotation_size'] = []
agg_data['segment_animated_translation_size'] = []
agg_data['segment_animated_scale_size'] = []
agg_data['unknown_overhead_size'] = []
agg_run_stats[algorithm_uid] = agg_data
agg_data = agg_run_stats[algorithm_uid]
agg_data['total_raw_size'] += run_stats['raw_size']
agg_data['total_compressed_size'] += run_stats['compressed_size']
agg_data['total_compression_time'] += run_stats['compression_time']
agg_data['total_duration'] += run_stats['duration']
agg_data['max_error'] = max(agg_data['max_error'], run_stats['max_error'])
agg_data['num_runs'] += 1
agg_data['compressed_size'].append(run_stats['compressed_size'])
if 'segments' in run_stats and len(run_stats['segments']) > 0:
for segment in run_stats['segments']:
if 'bit_rate_counts' in segment:
for i in range(25):
agg_data['bit_rates'][i] += segment['bit_rate_counts'][i]
# Detailed stats
if 'num_default_rotation_tracks' in run_stats:
agg_data['num_segments'].append(run_stats['segmenting']['num_segments'])
agg_data['num_default_rotation_tracks'].append(run_stats['num_default_rotation_tracks'])
agg_data['num_default_translation_tracks'].append(run_stats['num_default_translation_tracks'])
agg_data['num_default_scale_tracks'].append(run_stats['num_default_scale_tracks'])
agg_data['num_constant_rotation_tracks'].append(run_stats['num_constant_rotation_tracks'])
agg_data['num_constant_translation_tracks'].append(run_stats['num_constant_translation_tracks'])
agg_data['num_constant_scale_tracks'].append(run_stats['num_constant_scale_tracks'])
agg_data['num_animated_rotation_tracks'].append(run_stats['num_animated_rotation_tracks'])
agg_data['num_animated_translation_tracks'].append(run_stats['num_animated_translation_tracks'])
agg_data['num_animated_scale_tracks'].append(run_stats['num_animated_scale_tracks'])
agg_data['num_default_tracks'].append(run_stats['num_default_tracks'])
agg_data['num_constant_tracks'].append(run_stats['num_constant_tracks'])
agg_data['num_animated_tracks'].append(run_stats['num_animated_tracks'])
agg_data['clip_header_size'].append(run_stats['clip_header_size'])
agg_data['clip_metadata_common_size'].append(run_stats['clip_metadata_common_size'])
agg_data['clip_metadata_rotation_constant_size'].append(run_stats['clip_metadata_rotation_constant_size'])
agg_data['clip_metadata_translation_constant_size'].append(run_stats['clip_metadata_translation_constant_size'])
agg_data['clip_metadata_scale_constant_size'].append(run_stats['clip_metadata_scale_constant_size'])
agg_data['clip_metadata_rotation_animated_size'].append(run_stats['clip_metadata_rotation_animated_size'])
agg_data['clip_metadata_translation_animated_size'].append(run_stats['clip_metadata_translation_animated_size'])
agg_data['clip_metadata_scale_animated_size'].append(run_stats['clip_metadata_scale_animated_size'])
agg_data['segment_metadata_common_size'].append(run_stats['segment_metadata_common_size'])
agg_data['segment_metadata_rotation_size'].append(run_stats['segment_metadata_rotation_size'])
agg_data['segment_metadata_translation_size'].append(run_stats['segment_metadata_translation_size'])
agg_data['segment_metadata_scale_size'].append(run_stats['segment_metadata_scale_size'])
agg_data['segment_animated_rotation_size'].append(run_stats['segment_animated_rotation_size'])
agg_data['segment_animated_translation_size'].append(run_stats['segment_animated_translation_size'])
agg_data['segment_animated_scale_size'].append(run_stats['segment_animated_scale_size'])
agg_data['unknown_overhead_size'].append(run_stats['unknown_overhead_size'])
def track_best_runs(best_runs, run_stats):
if run_stats['max_error'] < best_runs['best_error']:
best_runs['best_error'] = run_stats['max_error']
best_runs['best_error_entry'] = run_stats
if run_stats['compression_ratio'] > best_runs['best_ratio']:
best_runs['best_ratio'] = run_stats['compression_ratio']
best_runs['best_ratio_entry'] = run_stats
def track_worst_runs(worst_runs, run_stats):
if run_stats['max_error'] > worst_runs['worst_error']:
worst_runs['worst_error'] = run_stats['max_error']
worst_runs['worst_error_entry'] = run_stats
if run_stats['compression_ratio'] < worst_runs['worst_ratio']:
worst_runs['worst_ratio'] = run_stats['compression_ratio']
worst_runs['worst_ratio_entry'] = run_stats
def run_stat_parsing(options, stat_queue, result_queue):
#signal.signal(signal.SIGINT, signal.SIG_IGN)
try:
agg_run_stats = {}
best_runs = {}
best_runs['best_error'] = 100000000.0
best_runs['best_error_entry'] = None
best_runs['best_ratio'] = 0.0
best_runs['best_ratio_entry'] = None
worst_runs = {}
worst_runs['worst_error'] = -100000000.0
worst_runs['worst_error_entry'] = None
worst_runs['worst_ratio'] = 100000000.0
worst_runs['worst_ratio_entry'] = None
num_runs = 0
num_looping = 0
total_compression_time = 0.0
stats_summary_data = []
stats_error_data = []
stats_animated_size = []
bone_error_values = []
compression_times = []
while True:
stat_filename = stat_queue.get()
if stat_filename is None:
break
with open(stat_filename, 'r') as file:
try:
file_data = sjson.loads(file.read())
runs = file_data['runs']
for run_stats in runs:
if len(run_stats) == 0:
continue
run_stats['filename'] = stat_filename.replace('\\\\?\\', '')
run_stats['clip_name'] = os.path.splitext(os.path.basename(stat_filename))[0]
run_stats['rotation_format'] = shorten_rotation_format(run_stats['rotation_format'])
run_stats['translation_format'] = shorten_translation_format(run_stats['translation_format'])
run_stats['scale_format'] = shorten_scale_format(run_stats['scale_format'])
if isinstance(run_stats['duration'], str):
run_stats['duration'] = 0.0
run_stats['desc'] = '{}|{}|{}'.format(run_stats['rotation_format'], run_stats['translation_format'], run_stats['scale_format'])
run_stats['csv_desc'] = '{}|{}|{}'.format(run_stats['rotation_format'], run_stats['translation_format'], run_stats['scale_format'])
aggregate_stats(agg_run_stats, run_stats)
track_best_runs(best_runs, run_stats)
track_worst_runs(worst_runs, run_stats)
num_runs += 1
total_compression_time += run_stats['compression_time']
compression_times.append(run_stats['compression_time'])
is_looping = 'looping' in run_stats and run_stats['looping']
if is_looping:
num_looping += 1
if options['csv_summary']:
#(name, raw_size, compressed_size, compression_ratio, compression_time, duration, num_animated_tracks, max_error, num_transforms, num_samples_per_track, quantization_memory_usage)
num_transforms = run_stats['num_bones']
num_samples_per_track = run_stats['num_samples']
num_animated_tracks = run_stats.get('num_animated_tracks', 0)
quantization_memory_usage = run_stats.get('track_bit_rate_database_size', 0) + run_stats.get('transform_cache_size', 0)
data = (run_stats['clip_name'], run_stats['csv_desc'], \
run_stats['raw_size'], run_stats['compressed_size'], run_stats['compression_ratio'], run_stats['compression_time'], \
run_stats['duration'], num_animated_tracks, run_stats['max_error'], num_transforms, num_samples_per_track, \
quantization_memory_usage, is_looping, run_stats['num_trivial_keyframes'],
run_stats['longest_chain_length'])
stats_summary_data.append(data)
if 'segments' in run_stats and len(run_stats['segments']) > 0:
segment_index = 0
for segment in run_stats['segments']:
num_animated_tracks = run_stats.get('num_animated_tracks', 0)
stats_animated_size.append((run_stats['clip_name'], segment_index, float(segment['animated_frame_size']), num_animated_tracks))
if 'error_per_frame_and_bone' in segment and len(segment['error_per_frame_and_bone']) > 0:
# Convert to array, lower memory footprint and more efficient
if options['csv_error']:
#(name, segment_index, data)
data = (run_stats['clip_name'], segment_index, segment['error_per_frame_and_bone'])
stats_error_data.append(data)
for frame_error_values in segment['error_per_frame_and_bone']:
bone_error_values.extend([float(v) for v in frame_error_values])
# Data isn't needed anymore, discard it
segment['error_per_frame_and_bone'] = []
segment_index += 1
result_queue.put(('progress', stat_filename))
except sjson.ParseException:
print('Failed to parse SJSON file: {}'.format(stat_filename.replace('\\\\?\\', '')))
except TypeError:
print('Failed to process SJSON file: {}'.format(stat_filename.replace('\\\\?\\', '')))
# Done
results = {}
results['agg_run_stats'] = agg_run_stats
results['best_runs'] = best_runs
results['worst_runs'] = worst_runs
results['num_runs'] = num_runs
results['num_looping'] = num_looping
results['total_compression_time'] = total_compression_time
results['stats_summary_data'] = stats_summary_data
results['stats_error_data'] = stats_error_data
results['stats_animated_size'] = stats_animated_size
results['bone_error_values'] = bone_error_values
results['compression_times'] = compression_times
result_queue.put(('done', results))
except KeyboardInterrupt:
print('Interrupted')
def pretty_print(d, indent = 0):
for key, value in d.items():
if isinstance(value, dict):
print('\t' * indent + str(key))
pretty(value, indent + 1)
else:
print('\t' * indent + str(key) + ': ' + str(value))
def aggregate_job_stats(agg_job_results, job_results):
if job_results['num_runs'] == 0:
return
if len(agg_job_results) == 0:
# Convert array to numpy array
job_results['bone_error_values'] = numpy.array(job_results['bone_error_values'])
job_results['compression_times'] = numpy.array(job_results['compression_times'])
agg_job_results.update(job_results)
else:
agg_job_results['num_runs'] += job_results['num_runs']
agg_job_results['num_looping'] += job_results['num_looping']
agg_job_results['total_compression_time'] += job_results['total_compression_time']
for key in job_results['agg_run_stats'].keys():
if not key in agg_job_results['agg_run_stats']:
agg_job_results['agg_run_stats'][key] = job_results['agg_run_stats'][key].copy()
else:
agg_job_results['agg_run_stats'][key]['total_raw_size'] += job_results['agg_run_stats'][key]['total_raw_size']
agg_job_results['agg_run_stats'][key]['total_compressed_size'] += job_results['agg_run_stats'][key]['total_compressed_size']
agg_job_results['agg_run_stats'][key]['total_compression_time'] += job_results['agg_run_stats'][key]['total_compression_time']
agg_job_results['agg_run_stats'][key]['total_duration'] += job_results['agg_run_stats'][key]['total_duration']
agg_job_results['agg_run_stats'][key]['max_error'] = max(agg_job_results['agg_run_stats'][key]['max_error'], job_results['agg_run_stats'][key]['max_error'])
agg_job_results['agg_run_stats'][key]['num_runs'] += job_results['agg_run_stats'][key]['num_runs']
agg_job_results['agg_run_stats'][key]['compressed_size'] += job_results['agg_run_stats'][key]['compressed_size']
for i in range(25):
agg_job_results['agg_run_stats'][key]['bit_rates'][i] += job_results['agg_run_stats'][key]['bit_rates'][i]
# Detailed stats
if 'num_default_rotation_tracks' in job_results['agg_run_stats'][key]:
agg_job_results['agg_run_stats'][key]['num_segments'] += job_results['agg_run_stats'][key]['num_segments']
agg_job_results['agg_run_stats'][key]['num_default_rotation_tracks'] += job_results['agg_run_stats'][key]['num_default_rotation_tracks']
agg_job_results['agg_run_stats'][key]['num_default_translation_tracks'] += job_results['agg_run_stats'][key]['num_default_translation_tracks']
agg_job_results['agg_run_stats'][key]['num_default_scale_tracks'] += job_results['agg_run_stats'][key]['num_default_scale_tracks']
agg_job_results['agg_run_stats'][key]['num_constant_rotation_tracks'] += job_results['agg_run_stats'][key]['num_constant_rotation_tracks']
agg_job_results['agg_run_stats'][key]['num_constant_translation_tracks'] += job_results['agg_run_stats'][key]['num_constant_translation_tracks']
agg_job_results['agg_run_stats'][key]['num_constant_scale_tracks'] += job_results['agg_run_stats'][key]['num_constant_scale_tracks']
agg_job_results['agg_run_stats'][key]['num_animated_rotation_tracks'] += job_results['agg_run_stats'][key]['num_animated_rotation_tracks']
agg_job_results['agg_run_stats'][key]['num_animated_translation_tracks'] += job_results['agg_run_stats'][key]['num_animated_translation_tracks']
agg_job_results['agg_run_stats'][key]['num_animated_scale_tracks'] += job_results['agg_run_stats'][key]['num_animated_scale_tracks']
agg_job_results['agg_run_stats'][key]['num_default_tracks'] += job_results['agg_run_stats'][key]['num_default_tracks']
agg_job_results['agg_run_stats'][key]['num_constant_tracks'] += job_results['agg_run_stats'][key]['num_constant_tracks']
agg_job_results['agg_run_stats'][key]['num_animated_tracks'] += job_results['agg_run_stats'][key]['num_animated_tracks']
agg_job_results['agg_run_stats'][key]['clip_header_size'] += job_results['agg_run_stats'][key]['clip_header_size']
agg_job_results['agg_run_stats'][key]['clip_metadata_common_size'] += job_results['agg_run_stats'][key]['clip_metadata_common_size']
agg_job_results['agg_run_stats'][key]['clip_metadata_rotation_constant_size'] += job_results['agg_run_stats'][key]['clip_metadata_rotation_constant_size']
agg_job_results['agg_run_stats'][key]['clip_metadata_translation_constant_size'] += job_results['agg_run_stats'][key]['clip_metadata_translation_constant_size']
agg_job_results['agg_run_stats'][key]['clip_metadata_scale_constant_size'] += job_results['agg_run_stats'][key]['clip_metadata_scale_constant_size']
agg_job_results['agg_run_stats'][key]['clip_metadata_rotation_animated_size'] += job_results['agg_run_stats'][key]['clip_metadata_rotation_animated_size']
agg_job_results['agg_run_stats'][key]['clip_metadata_translation_animated_size'] += job_results['agg_run_stats'][key]['clip_metadata_translation_animated_size']
agg_job_results['agg_run_stats'][key]['clip_metadata_scale_animated_size'] += job_results['agg_run_stats'][key]['clip_metadata_scale_animated_size']
agg_job_results['agg_run_stats'][key]['segment_metadata_common_size'] += job_results['agg_run_stats'][key]['segment_metadata_common_size']
agg_job_results['agg_run_stats'][key]['segment_metadata_rotation_size'] += job_results['agg_run_stats'][key]['segment_metadata_rotation_size']
agg_job_results['agg_run_stats'][key]['segment_metadata_translation_size'] += job_results['agg_run_stats'][key]['segment_metadata_translation_size']
agg_job_results['agg_run_stats'][key]['segment_metadata_scale_size'] += job_results['agg_run_stats'][key]['segment_metadata_scale_size']
agg_job_results['agg_run_stats'][key]['segment_animated_rotation_size'] += job_results['agg_run_stats'][key]['segment_animated_rotation_size']
agg_job_results['agg_run_stats'][key]['segment_animated_translation_size'] += job_results['agg_run_stats'][key]['segment_animated_translation_size']
agg_job_results['agg_run_stats'][key]['segment_animated_scale_size'] += job_results['agg_run_stats'][key]['segment_animated_scale_size']
agg_job_results['agg_run_stats'][key]['unknown_overhead_size'] += job_results['agg_run_stats'][key]['unknown_overhead_size']
if job_results['best_runs']['best_error'] < agg_job_results['best_runs']['best_error']:
agg_job_results['best_runs']['best_error'] = job_results['best_runs']['best_error']
agg_job_results['best_runs']['best_error_entry'] = job_results['best_runs']['best_error_entry']
if job_results['best_runs']['best_ratio'] > agg_job_results['best_runs']['best_ratio']:
agg_job_results['best_runs']['best_ratio'] = job_results['best_runs']['best_ratio']
agg_job_results['best_runs']['best_ratio_entry'] = job_results['best_runs']['best_ratio_entry']
if job_results['worst_runs']['worst_error'] > agg_job_results['worst_runs']['worst_error']:
agg_job_results['worst_runs']['worst_error'] = job_results['worst_runs']['worst_error']
agg_job_results['worst_runs']['worst_error_entry'] = job_results['worst_runs']['worst_error_entry']
if job_results['worst_runs']['worst_ratio'] < agg_job_results['worst_runs']['worst_ratio']:
agg_job_results['worst_runs']['worst_ratio'] = job_results['worst_runs']['worst_ratio']
agg_job_results['worst_runs']['worst_ratio_entry'] = job_results['worst_runs']['worst_ratio_entry']
agg_job_results['bone_error_values'] = numpy.append(agg_job_results['bone_error_values'], job_results['bone_error_values'])
agg_job_results['compression_times'] = numpy.append(agg_job_results['compression_times'], job_results['compression_times'])
agg_job_results['stats_animated_size'] += job_results['stats_animated_size']
def percentile_rank(values, value):
return (values < value).mean() * 100.0
def aggregate_and_print_track_results(agg_run_stats, key):
if key:
label = '{} '.format(key)
key = '{}_'.format(key)
else:
label = ''
key = ''
total_key = 'total_{}tracks'.format(key)
default_ratios_key = 'default_{}tracks_ratios'.format(key)
constant_ratios_key = 'constant_{}tracks_ratios'.format(key)
animated_ratios_key = 'animated_{}tracks_ratios'.format(key)
num_default_key = 'num_default_{}tracks'.format(key)
num_constant_key = 'num_constant_{}tracks'.format(key)
num_animated_key = 'num_animated_{}tracks'.format(key)
for value in agg_run_stats.values():
value[total_key] = [x + y + z for x, y, z in zip(value[num_default_key], value[num_constant_key], value[num_animated_key])]
value[default_ratios_key] = [(x / y) * 100.0 for x, y in zip(value[num_default_key], value[total_key])]
value[constant_ratios_key] = [(x / y) * 100.0 for x, y in zip(value[num_constant_key], value[total_key])]
value[animated_ratios_key] = [(x / y) * 100.0 for x, y in zip(value[num_animated_key], value[total_key])]
total_tracks = sum([sum(x[total_key]) for x in agg_run_stats.values()])
total_default_tracks = sum([sum(x[num_default_key]) for x in agg_run_stats.values()])
total_constant_tracks = sum([sum(x[num_constant_key]) for x in agg_run_stats.values()])
total_animated_tracks = sum([sum(x[num_animated_key]) for x in agg_run_stats.values()])
tmp = list(chain.from_iterable([x[default_ratios_key] for x in agg_run_stats.values()]))
total_default_tracks_p50 = numpy.percentile(tmp, 50.0)
total_default_tracks_p85 = numpy.percentile(tmp, 85.0)
total_default_tracks_p99 = numpy.percentile(tmp, 99.0)
tmp = list(chain.from_iterable([x[constant_ratios_key] for x in agg_run_stats.values()]))
total_constant_tracks_p50 = numpy.percentile(tmp, 50.0)
total_constant_tracks_p85 = numpy.percentile(tmp, 85.0)
total_constant_tracks_p99 = numpy.percentile(tmp, 99.0)
tmp = list(chain.from_iterable([x[animated_ratios_key] for x in agg_run_stats.values()]))
total_animated_tracks_p50 = numpy.percentile(tmp, 50.0)
total_animated_tracks_p85 = numpy.percentile(tmp, 85.0)
total_animated_tracks_p99 = numpy.percentile(tmp, 99.0)
print('Total {}tracks: {}'.format(label, total_tracks))
print('Total default {}tracks: {} ({:.2f} %)'.format(label, total_default_tracks, (total_default_tracks / total_tracks) * 100.0))
print(' 50, 85, 99th percentile: {:.2f} %, {:.2f} %, {:.2f} %'.format(total_default_tracks_p50, total_default_tracks_p85, total_default_tracks_p99))
print('Total constant {}tracks: {} ({:.2f} %)'.format(label, total_constant_tracks, (total_constant_tracks / total_tracks) * 100.0))
print(' 50, 85, 99th percentile: {:.2f} %, {:.2f} %, {:.2f} %'.format(total_constant_tracks_p50, total_constant_tracks_p85, total_constant_tracks_p99))
print('Total animated {}tracks: {} ({:.2f} %)'.format(label, total_animated_tracks, (total_animated_tracks / total_tracks) * 100.0))
print(' 50, 85, 99th percentile: {:.2f} %, {:.2f} %, {:.2f} %'.format(total_animated_tracks_p50, total_animated_tracks_p85, total_animated_tracks_p99))
def aggregate_and_print_clip_metadata_results(agg_run_stats):
for value in agg_run_stats.values():
value['clip_metadata_total_constant_size'] = [x + y + z for x, y, z in zip(value['clip_metadata_rotation_constant_size'], value['clip_metadata_translation_constant_size'], value['clip_metadata_scale_constant_size'])]
value['clip_metadata_total_animated_size'] = [x + y + z for x, y, z in zip(value['clip_metadata_rotation_animated_size'], value['clip_metadata_translation_animated_size'], value['clip_metadata_scale_animated_size'])]
value['clip_metadata_total_size'] = [x + y + z + w for x, y, z, w in zip(value['clip_header_size'], value['clip_metadata_common_size'], value['clip_metadata_total_constant_size'], value['clip_metadata_total_animated_size'])]
clip_metadata_total_size = sum([sum(x['clip_metadata_total_size']) for x in agg_run_stats.values()])
total_compressed_size = sum([sum(x['compressed_size']) for x in agg_run_stats.values()])
value['clip_metadata_ratios'] = [(x / y) * 100.0 for x, y in zip(value['clip_metadata_total_size'], value['compressed_size'])]
tmp = list(chain.from_iterable([x['clip_metadata_ratios'] for x in agg_run_stats.values()]))
clip_metadata_ratio_p50 = numpy.percentile(tmp, 50.0)
clip_metadata_ratio_p85 = numpy.percentile(tmp, 85.0)
clip_metadata_ratio_p99 = numpy.percentile(tmp, 99.0)
print('Total clip metadata size: {:.2f} MB ({:.2f} %)'.format(bytes_to_mb(clip_metadata_total_size), (clip_metadata_total_size / total_compressed_size) * 100.0))
print(' 50, 85, 99th percentile: {:.2f} %, {:.2f} %, {:.2f} %'.format(clip_metadata_ratio_p50, clip_metadata_ratio_p85, clip_metadata_ratio_p99))
def aggregate_and_print_segment_metadata_results(agg_run_stats):
for value in agg_run_stats.values():
value['segment_metadata_total_size'] = [x + y + z + w for x, y, z, w in zip(value['segment_metadata_common_size'], value['segment_metadata_rotation_size'], value['segment_metadata_translation_size'], value['segment_metadata_scale_size'])]
segment_metadata_total_size = sum([sum(x['segment_metadata_total_size']) for x in agg_run_stats.values()])
total_compressed_size = sum([sum(x['compressed_size']) for x in agg_run_stats.values()])
value['segment_metadata_ratios'] = [(x / y) * 100.0 for x, y in zip(value['segment_metadata_total_size'], value['compressed_size'])]
tmp = list(chain.from_iterable([x['segment_metadata_ratios'] for x in agg_run_stats.values()]))
segment_metadata_ratio_p50 = numpy.percentile(tmp, 50.0)
segment_metadata_ratio_p85 = numpy.percentile(tmp, 85.0)
segment_metadata_ratio_p99 = numpy.percentile(tmp, 99.0)
print('Total segment metadata size: {:.2f} MB ({:.2f} %)'.format(bytes_to_mb(segment_metadata_total_size), (segment_metadata_total_size / total_compressed_size) * 100.0))
print(' 50, 85, 99th percentile: {:.2f} %, {:.2f} %, {:.2f} %'.format(segment_metadata_ratio_p50, segment_metadata_ratio_p85, segment_metadata_ratio_p99))
def aggregate_and_print_segment_animated_results(agg_run_stats):
for value in agg_run_stats.values():
value['segment_animated_total_size'] = [x + y + z for x, y, z in zip(value['segment_animated_rotation_size'], value['segment_animated_translation_size'], value['segment_animated_scale_size'])]
segment_animated_total_size = sum([sum(x['segment_animated_total_size']) for x in agg_run_stats.values()])
total_compressed_size = sum([sum(x['compressed_size']) for x in agg_run_stats.values()])
value['segment_animated_ratios'] = [(x / y) * 100.0 for x, y in zip(value['segment_animated_total_size'], value['compressed_size'])]
tmp = list(chain.from_iterable([x['segment_animated_ratios'] for x in agg_run_stats.values()]))
segment_animated_ratio_p50 = numpy.percentile(tmp, 50.0)
segment_animated_ratio_p85 = numpy.percentile(tmp, 85.0)
segment_animated_ratio_p99 = numpy.percentile(tmp, 99.0)
print('Total segment animated size: {:.2f} MB ({:.2f} %)'.format(bytes_to_mb(segment_animated_total_size), (segment_animated_total_size / total_compressed_size) * 100.0))
print(' 50, 85, 99th percentile: {:.2f} %, {:.2f} %, {:.2f} %'.format(segment_animated_ratio_p50, segment_animated_ratio_p85, segment_animated_ratio_p99))
def aggregate_and_print_num_segment_results(agg_run_stats):
for value in agg_run_stats.values():
value['total_num_segments'] = [x + y + z for x, y, z in zip(value['segment_animated_rotation_size'], value['segment_animated_translation_size'], value['segment_animated_scale_size'])]
total_num_segments = sum([sum(x['num_segments']) for x in agg_run_stats.values()])
value['segment_animated_ratios'] = [(x / y) * 100.0 for x, y in zip(value['segment_animated_total_size'], value['compressed_size'])]
tmp = list(chain.from_iterable([x['num_segments'] for x in agg_run_stats.values()]))
num_segments_p50 = numpy.percentile(tmp, 50.0)
num_segments_p85 = numpy.percentile(tmp, 85.0)
num_segments_p99 = numpy.percentile(tmp, 99.0)
print('Total num segments: {}'.format(total_num_segments))
print(' 50, 85, 99th percentile: {:.2f}, {:.2f}, {:.2f}'.format(num_segments_p50, num_segments_p85, num_segments_p99))
if __name__ == "__main__":
if sys.version_info < (3, 4):
print('Python 3.4 or higher needed to run this script')
sys.exit(1)
options = parse_argv()
stat_files = compress_clips(options)
csv_data = create_csv(options)
aggregating_start_time = time.perf_counter()
stat_queue = multiprocessing.Queue()
for stat_filename in stat_files:
stat_queue.put(stat_filename)
# Add a marker to terminate the jobs
for i in range(options['num_threads']):
stat_queue.put(None)
result_queue = multiprocessing.Queue()
jobs = [ multiprocessing.Process(target = run_stat_parsing, args = (options, stat_queue, result_queue)) for _i in range(options['num_threads']) ]
for job in jobs:
job.start()
agg_job_results = {}
num_stat_file_processed = 0
if options['has_progress_bar']:
print_progress(num_stat_file_processed, len(stat_files), 'Aggregating results:', '{} / {}'.format(num_stat_file_processed, len(stat_files)))
try:
while True:
try:
(msg, data) = result_queue.get(True, 1.0)
if msg == 'progress':
num_stat_file_processed += 1
if options['has_progress_bar']:
print_progress(num_stat_file_processed, len(stat_files), 'Aggregating results:', '{} / {}'.format(num_stat_file_processed, len(stat_files)))
elif msg == 'done':
aggregate_job_stats(agg_job_results, data)
append_csv(csv_data, data)
except queue.Empty:
all_jobs_done = True
for job in jobs:
if job.is_alive():
all_jobs_done = False
if all_jobs_done:
break
except KeyboardInterrupt:
sys.exit(1)
agg_run_stats = agg_job_results['agg_run_stats']
best_runs = agg_job_results['best_runs']
worst_runs = agg_job_results['worst_runs']
num_runs = agg_job_results['num_runs']
write_csv(csv_data, agg_run_stats)
aggregating_end_time = time.perf_counter()
print()
print('Found {} runs in {}'.format(num_runs, format_elapsed_time(aggregating_end_time - aggregating_start_time)))
print()
close_csv(csv_data)
print('Stats per run type:')
run_types_by_size = sorted(agg_run_stats.values(), key = lambda entry: entry['total_compressed_size'])
for run_stats in run_types_by_size:
ratio = float(run_stats['total_raw_size']) / float(run_stats['total_compressed_size'])
print('Compressed {:.2f} MB, Elapsed {}, Ratio [{:.2f} : 1], Max error [{:.4f}] Run type: {}'.format(bytes_to_mb(run_stats['total_compressed_size']), format_elapsed_time(run_stats['total_compression_time']), ratio, run_stats['max_error'], run_stats['name']))
print()
print('Total:')
total_raw_size = sum([x['total_raw_size'] for x in agg_run_stats.values()])
total_compressed_size = sum([x['total_compressed_size'] for x in agg_run_stats.values()])
total_compression_time = sum([x['total_compression_time'] for x in agg_run_stats.values()])
total_max_error = max([x['max_error'] for x in agg_run_stats.values()])
total_ratio = float(total_raw_size) / float(total_compressed_size)
clip_compressed_sizes = list(chain.from_iterable([x['compressed_size'] for x in agg_run_stats.values()]))
clip_animated_frame_sizes = [x[2] for x in agg_job_results['stats_animated_size']]
print('Compressed {:.2f} MB, Elapsed {}, Ratio [{:.2f} : 1], Max error [{:.4f}]'.format(bytes_to_mb(total_compressed_size), format_elapsed_time(total_compression_time), total_ratio, total_max_error))
print(' Compressed size 50, 85, 99th percentile: {:.2f}, {:.2f}, {:.2f} KB'.format(bytes_to_kb(numpy.percentile(clip_compressed_sizes, 50.0)), bytes_to_kb(numpy.percentile(clip_compressed_sizes, 85.0)), bytes_to_kb(numpy.percentile(clip_compressed_sizes, 99.0))))
print(' Animated frame size 50, 85, 99th percentile: {:.2f}, {:.2f}, {:.2f} B'.format(numpy.percentile(clip_animated_frame_sizes, 50.0), numpy.percentile(clip_animated_frame_sizes, 85.0), numpy.percentile(clip_animated_frame_sizes, 99.0)))
print(' Compression time 50, 85, 99th percentile: {:.3f}, {:.3f}, {:.3f} seconds'.format(numpy.percentile(agg_job_results['compression_times'], 50.0), numpy.percentile(agg_job_results['compression_times'], 85.0), numpy.percentile(agg_job_results['compression_times'], 99.0)))
print(' Num looping: {}'.format(agg_job_results['num_looping']))
print()
total_duration = sum([x['total_duration'] for x in agg_run_stats.values()])
print('Sum of clip durations: {}'.format(format_elapsed_time(total_duration)))
print('Total compression time: {} ({:.3f} seconds)'.format(format_elapsed_time(total_compression_time), total_compression_time))
print('Total raw size: {:.2f} MB'.format(bytes_to_mb(total_raw_size)))
print('Compression speed: {:.2f} KB/sec'.format(bytes_to_kb(total_raw_size) / total_compression_time))
if len(agg_job_results['bone_error_values']) > 0: