diff --git a/tests/test_unit/test_kinematics.py b/tests/test_unit/test_kinematics.py
index c2db89c27..5914dfd24 100644
--- a/tests/test_unit/test_kinematics.py
+++ b/tests/test_unit/test_kinematics.py
@@ -185,126 +185,128 @@ def test_approximate_derivative_with_invalid_order(order):
     with pytest.raises(expected_exception):
         kinematics._compute_approximate_time_derivative(data, order=order)
 
-    @pytest.mark.parametrize(
-        "dim, pairs, expected_data",
-        [
-            (
-                "individuals",
-                ("ind1", "ind2"),
-                np.array(
+
+@pytest.mark.parametrize(
+    "dim, pairs, expected_data",
+    [
+        (
+            "individuals",
+            ("ind1", "ind2"),
+            np.array(
+                [
+                    [
+                        [1.0, 0.0, np.sqrt(2)],
+                        [1.0, np.sqrt(2), 0.0],
+                        [0.0, 1.0, 1.0],
+                    ],
                     [
-                        [
-                            [1.0, 0.0, np.sqrt(2)],
-                            [1.0, np.sqrt(2), 0.0],
-                            [0.0, 1.0, 1.0],
-                        ],
-                        [
-                            [np.sqrt(13), 0.0, np.sqrt(8)],
-                            [1.0, np.sqrt(8), 0.0],
-                            [0.0, np.sqrt(13), 1.0],
-                        ],
-                    ]
-                ),
+                        [np.sqrt(13), 0.0, np.sqrt(8)],
+                        [1.0, np.sqrt(8), 0.0],
+                        [0.0, np.sqrt(13), 1.0],
+                    ],
+                ]
             ),
-            (
-                "keypoints",
-                ("key1", "key2"),
-                np.array(
+        ),
+        (
+            "keypoints",
+            ("key1", "key2"),
+            np.array(
+                [
                     [
-                        [
-                            [np.sqrt(2), 0.0, 1.0],
-                            [1.0, 1.0, 0.0],
-                            [0.0, np.sqrt(2), 1.0],
-                        ],
-                        [
-                            [np.sqrt(8), 0.0, np.sqrt(13)],
-                            [1.0, np.sqrt(13), 0.0],
-                            [0.0, np.sqrt(8), 1.0],
-                        ],
-                    ]
-                ),
+                        [np.sqrt(2), 0.0, 1.0],
+                        [1.0, 1.0, 0.0],
+                        [0.0, np.sqrt(2), 1.0],
+                    ],
+                    [
+                        [np.sqrt(8), 0.0, np.sqrt(13)],
+                        [1.0, np.sqrt(13), 0.0],
+                        [0.0, np.sqrt(8), 1.0],
+                    ],
+                ]
             ),
+        ),
+    ],
+)
+def test_cdist(dim, pairs, expected_data, pairwise_distances_dataset):
+    """Test the computation of pairwise distances with known values."""
+    core_dim = "keypoints" if dim == "individuals" else "individuals"
+    input_dataarray = pairwise_distances_dataset.position
+    expected = xr.DataArray(
+        expected_data,
+        coords=[
+            input_dataarray.time.values,
+            getattr(input_dataarray, core_dim).values,
+            getattr(input_dataarray, core_dim).values,
         ],
+        dims=["time", pairs[0], pairs[1]],
+    )
+    a = input_dataarray.sel({dim: pairs[0]})
+    b = input_dataarray.sel({dim: pairs[1]})
+    result = kinematics.cdist(a, b, dim)
+    xr.testing.assert_equal(
+        result,
+        expected,
     )
-    def test_cdist(
-        self, dim, pairs, expected_data, pairwise_distances_dataset
-    ):
-        """Test the computation of pairwise distances with known values."""
-        core_dim = "keypoints" if dim == "individuals" else "individuals"
-        input_dataarray = pairwise_distances_dataset.position
-        expected = xr.DataArray(
-            expected_data,
-            coords=[
-                input_dataarray.time.values,
-                getattr(input_dataarray, core_dim).values,
-                getattr(input_dataarray, core_dim).values,
-            ],
-            dims=["time", pairs[0], pairs[1]],
-        )
-        a = input_dataarray.sel({dim: pairs[0]})
-        b = input_dataarray.sel({dim: pairs[1]})
-        result = kinematics.cdist(a, b, dim)
-        xr.testing.assert_equal(
-            result,
-            expected,
-        )
 
-    def expected_pairwise_distances(self, pairs, input_ds, dim):
-        """Return a list of the expected data variable names
-        for pairwise distances tests.
-        """
-        if pairs is None:
-            paired_elements = list(
-                itertools.combinations(getattr(input_ds, dim).values, 2)
+
+def expected_pairwise_distances(pairs, input_ds, dim):
+    """Return a list of the expected data variable names
+    for pairwise distances tests.
+    """
+    if pairs is None:
+        paired_elements = list(
+            itertools.combinations(getattr(input_ds, dim).values, 2)
+        )
+    else:
+        paired_elements = [
+            (elem1, elem2)
+            for elem1, elem2_list in pairs.items()
+            for elem2 in (
+                [elem2_list] if isinstance(elem2_list, str) else elem2_list
             )
-        else:
-            paired_elements = [
-                (elem1, elem2)
-                for elem1, elem2_list in pairs.items()
-                for elem2 in (
-                    [elem2_list] if isinstance(elem2_list, str) else elem2_list
-                )
-            ]
-        expected_data = [
-            f"dist_{elem1}_{elem2}" for elem1, elem2 in paired_elements
         ]
-        return expected_data
+    expected_data = [
+        f"dist_{elem1}_{elem2}" for elem1, elem2 in paired_elements
+    ]
+    return expected_data
 
-    @pytest.mark.parametrize(
-        "dim, pairs",
-        [
-            ("individuals", {"ind1": ["ind2"]}),  # list input
-            ("individuals", {"ind1": "ind2"}),  # string input
-            ("individuals", {"ind1": ["ind2", "ind3"], "ind2": "ind3"}),
-            ("individuals", None),  # all pairs
-            ("keypoints", {"key1": ["key2"]}),  # list input
-            ("keypoints", {"key1": "key2"}),  # string input
-            ("keypoints", {"key1": ["key2", "key3"], "key2": "key3"}),
-            ("keypoints", None),  # all pairs
-        ],
+
+@pytest.mark.parametrize(
+    "dim, pairs",
+    [
+        ("individuals", {"ind1": ["ind2"]}),  # list input
+        ("individuals", {"ind1": "ind2"}),  # string input
+        ("individuals", {"ind1": ["ind2", "ind3"], "ind2": "ind3"}),
+        ("individuals", None),  # all pairs
+        ("keypoints", {"key1": ["key2"]}),  # list input
+        ("keypoints", {"key1": "key2"}),  # string input
+        ("keypoints", {"key1": ["key2", "key3"], "key2": "key3"}),
+        ("keypoints", None),  # all pairs
+    ],
+)
+def test_compute_pairwise_distances_with_valid_pairs(
+    pairwise_distances_dataset, dim, pairs
+):
+    """Test that the expected pairwise distances are computed
+    for valid ``pairs`` inputs.
+    """
+    result = getattr(kinematics, f"compute_inter{dim[:-1]}_distances")(
+        pairwise_distances_dataset.position, pairs=pairs
     )
-    def test_compute_pairwise_distances_with_valid_pairs(
-        self, pairwise_distances_dataset, dim, pairs
-    ):
-        """Test that the expected pairwise distances are computed
-        for valid ``pairs`` inputs.
-        """
-        result = getattr(kinematics, f"compute_inter{dim[:-1]}_distances")(
-            pairwise_distances_dataset.position, pairs=pairs
-        )
-        expected_data_vars = self.expected_pairwise_distances(
-            pairs, pairwise_distances_dataset, dim
-        )
-        if isinstance(result, dict):
-            assert set(result.keys()) == set(expected_data_vars)
-        else:  # expect single DataArray
-            assert isinstance(result, xr.DataArray)
+    expected_data_vars = expected_pairwise_distances(
+        pairs, pairwise_distances_dataset, dim
+    )
+    if isinstance(result, dict):
+        assert set(result.keys()) == set(expected_data_vars)
+    else:  # expect single DataArray
+        assert isinstance(result, xr.DataArray)
 
-    def test_compute_pairwise_distances_with_invalid_dim(
-        self, pairwise_distances_dataset
-    ):
-        """Test that an error is raised when an invalid dimension is passed."""
-        with pytest.raises(ValueError):
-            kinematics._compute_pairwise_distances(
-                pairwise_distances_dataset.position, "invalid_dim"
-            )
+
+def test_compute_pairwise_distances_with_invalid_dim(
+    pairwise_distances_dataset,
+):
+    """Test that an error is raised when an invalid dimension is passed."""
+    with pytest.raises(ValueError):
+        kinematics._compute_pairwise_distances(
+            pairwise_distances_dataset.position, "invalid_dim"
+        )