-
Notifications
You must be signed in to change notification settings - Fork 650
/
Copy pathopenaiapi.py
184 lines (138 loc) · 5.64 KB
/
openaiapi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import logging
import os
import io
import torch
import glob
from fastapi import FastAPI, Response
from pydantic import BaseModel
from frontend import g2p_cn_en, ROOT_DIR, read_lexicon, G2p
from models.prompt_tts_modified.jets import JETSGenerator
from models.prompt_tts_modified.simbert import StyleEncoder
from transformers import AutoTokenizer
import numpy as np
import soundfile as sf
import pyrubberband as pyrb
from pydub import AudioSegment
from yacs import config as CONFIG
from config.joint.config import Config
LOGGER = logging.getLogger(__name__)
DEFAULTS = {
}
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(DEVICE)
config = Config()
MAX_WAV_VALUE = 32768.0
def get_env(key):
return os.environ.get(key, DEFAULTS.get(key))
def get_int_env(key):
return int(get_env(key))
def get_float_env(key):
return float(get_env(key))
def get_bool_env(key):
return get_env(key).lower() == 'true'
def scan_checkpoint(cp_dir, prefix, c=8):
pattern = os.path.join(cp_dir, prefix + '?'*c)
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return None
return sorted(cp_list)[-1]
def get_models():
am_checkpoint_path = scan_checkpoint(
f'{config.output_directory}/prompt_tts_open_source_joint/ckpt', 'g_')
# f'{config.output_directory}/style_encoder/ckpt/checkpoint_163431'
style_encoder_checkpoint_path = scan_checkpoint(
f'{config.output_directory}/style_encoder/ckpt', 'checkpoint_', 6)
with open(config.model_config_path, 'r') as fin:
conf = CONFIG.load_cfg(fin)
conf.n_vocab = config.n_symbols
conf.n_speaker = config.speaker_n_labels
style_encoder = StyleEncoder(config)
model_CKPT = torch.load(style_encoder_checkpoint_path, map_location="cpu")
model_ckpt = {}
for key, value in model_CKPT['model'].items():
new_key = key[7:]
model_ckpt[new_key] = value
style_encoder.load_state_dict(model_ckpt, strict=False)
generator = JETSGenerator(conf).to(DEVICE)
model_CKPT = torch.load(am_checkpoint_path, map_location=DEVICE)
generator.load_state_dict(model_CKPT['generator'])
generator.eval()
tokenizer = AutoTokenizer.from_pretrained(config.bert_path)
with open(config.token_list_path, 'r') as f:
token2id = {t.strip(): idx for idx, t, in enumerate(f.readlines())}
with open(config.speaker2id_path, encoding='utf-8') as f:
speaker2id = {t.strip(): idx for idx, t in enumerate(f.readlines())}
return (style_encoder, generator, tokenizer, token2id, speaker2id)
def get_style_embedding(prompt, tokenizer, style_encoder):
prompt = tokenizer([prompt], return_tensors="pt")
input_ids = prompt["input_ids"]
token_type_ids = prompt["token_type_ids"]
attention_mask = prompt["attention_mask"]
with torch.no_grad():
output = style_encoder(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
style_embedding = output["pooled_output"].cpu().squeeze().numpy()
return style_embedding
def emotivoice_tts(text, prompt, content, speaker, models):
(style_encoder, generator, tokenizer, token2id, speaker2id) = models
style_embedding = get_style_embedding(prompt, tokenizer, style_encoder)
content_embedding = get_style_embedding(content, tokenizer, style_encoder)
speaker = speaker2id[speaker]
text_int = [token2id[ph] for ph in text.split()]
sequence = torch.from_numpy(np.array(text_int)).to(
DEVICE).long().unsqueeze(0)
sequence_len = torch.from_numpy(np.array([len(text_int)])).to(DEVICE)
style_embedding = torch.from_numpy(style_embedding).to(DEVICE).unsqueeze(0)
content_embedding = torch.from_numpy(
content_embedding).to(DEVICE).unsqueeze(0)
speaker = torch.from_numpy(np.array([speaker])).to(DEVICE)
with torch.no_grad():
infer_output = generator(
inputs_ling=sequence,
inputs_style_embedding=style_embedding,
input_lengths=sequence_len,
inputs_content_embedding=content_embedding,
inputs_speaker=speaker,
alpha=1.0
)
audio = infer_output["wav_predictions"].squeeze() * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
return audio
speakers = config.speakers
models = get_models()
app = FastAPI()
lexicon = read_lexicon(f"{ROOT_DIR}/lexicon/librispeech-lexicon.txt")
g2p = G2p()
from typing import Optional
class SpeechRequest(BaseModel):
input: str
voice: str = '8051'
prompt: Optional[str] = ''
language: Optional[str] = 'zh_us'
model: Optional[str] = 'emoti-voice'
response_format: Optional[str] = 'mp3'
speed: Optional[float] = 1.0
@app.post("/v1/audio/speech")
def text_to_speech(speechRequest: SpeechRequest):
text = g2p_cn_en(speechRequest.input, g2p, lexicon)
np_audio = emotivoice_tts(text, speechRequest.prompt,
speechRequest.input, speechRequest.voice,
models)
y_stretch = np_audio
if speechRequest.speed != 1.0:
y_stretch = pyrb.time_stretch(np_audio, config.sampling_rate, speechRequest.speed)
wav_buffer = io.BytesIO()
sf.write(file=wav_buffer, data=y_stretch,
samplerate=config.sampling_rate, format='WAV')
buffer = wav_buffer
response_format = speechRequest.response_format
if response_format != 'wav':
wav_audio = AudioSegment.from_wav(wav_buffer)
wav_audio.frame_rate=config.sampling_rate
buffer = io.BytesIO()
wav_audio.export(buffer, format=response_format)
return Response(content=buffer.getvalue(),
media_type=f"audio/{response_format}")