Skip to content

Latest commit

 

History

History
130 lines (98 loc) · 5.71 KB

README.md

File metadata and controls

130 lines (98 loc) · 5.71 KB

DAL

Data Access Layer

DAL is a proxy layer for SQL databases with a MongoDB inspired query interface. It can be used as a Go or NodeJS package (requires compiler). It is modular and allows to create your own proxy and apply custom middlewares.

Notes:

  • This project is still in early alpha. You need to build it yourself and use at your own risk.
  • At the time only SQLite is implemented, however, other drivers might work.

Use cases:

  • For IOT networks when MySQL/PG are too heavy.
  • If you need a layer between your application and the database (i.e. for caching).
  • If you want a MongoDB-like query interface for your SQL db.
  • When you need a SQLite proxy (useful to share datasets with services)

Usage

Server

The most efficient way to use DAL is to run the server as a standalone service.

Build:

go build -o server

Run:

export SQLITE_DIRECTORY=/opt/data

./server

2024/08/21 22:01:54 Starting server on port 8118
2024/08/21 22:01:54 Using directory: /opt/data

Client

Install:

pnpm add [email protected]:nesterow/dal.git

Query Interface

Method Description SQL
In(table: string) Select table SELECT * FROM table
Find(filter: object) Filter rows SELECT * FROM table WHERE filter
Fields(fields: string[]) Select fields SELECT fields, FROM table
Sort(sort) Sort rows SELECT * FROM table ORDER BY sort
Limit(limit: number) Limit rows SELECT * FROM table LIMIT limit
Offset(offset: number) Offset rows SELECT * FROM table OFFSET offset
Join({ $for: "t_2", $do: { "t.a": "b" } }) Join tables SELECT * FROM table t JOIN t_2 ON t.a = b
Insert({name: "J"}, {name: "B"}) Insert row INSERT INTO table (name,) VALUES ('J', 'B')
Set({name: "Julian"}) Update row (Find(filter).Set({})) UPDATE table SET name = 'Julian' WHERE filter
Delete() Delete row (Find(filter).Delete()) DELETE FROM table WHERE filter
As(DTO) Map rows to a DTO SELECT * FROM table
Rows() Get rows iterator SELECT * FROM table
Exec() Execute query (update, insert, delete) SQL RESULT
Query() Query database DTO array
Tx() Run in trasaction

Filters

Filter Description SQL
{id: 1, num: 2} Equals, default filter WHERE id = 1 AND num = 2
{id: { $eq: 1 }} Equals, explicit WHERE id = 1
{id: { $gt: 1 }} Greater than WHERE id > 1
{id: { $gte: 1 }} Greater than or equal WHERE id >= 1
{id: { $lt: 1 }} Less than WHERE id < 1
{id: { $lte: 1 }} Less than or equal WHERE id <= 1
{id: { $ne: 1 }} Not equal WHERE id != 1
{id: { $in: [1, 2] }} In WHERE id IN (1, 2)
{id: { $nin: [1, 2] }} Not in WHERE id NOT IN (1, 2)
{id: { $like: "a" }} Like WHERE id LIKE '%a%'
{id: { $nlike: "a" }} Not like WHERE id NOT LIKE '%a%'
{id: { $between: [1, 2] }} Between WHERE id BETWEEN 1 AND 2
{id: { $nbetween: [1, 2] }} Not between WHERE id NOT BETWEEN 1 AND 2
{id: { $glob: "\*son" }} Glob WHERE id GLOB '*son'

Example

import { DAL } from "@nesterow/dal";

class UserDTO {
  id: number = 0;
  name: string = "";
  data: string = "";
  age: number | undefined;
}

const db = new DAL({
  database: "test.sqlite",
  url: "http://localhost:8111",
});

// SELECT * FROM test t WHERE name GLOB '*son' AND age >= 18
const rows = db
  .In("test t")
  .Find({
    name: { $glob: "*son" },
    age: { $gte: 18 },
  })
  .As(UserDTO) // Map every row to DTO
  .Rows();

for await (const row of rows) {
  console.log(row); // Jason, Jackson
}

Internals

The client uses a light builder and messagepack over http. It is relatively easy to implement a client in any language see the docs

License

While in alpha stage the project is free for research purposes. Later it will be released under MIT-like license with AI/dataset exclusion terms.