-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_data.py
753 lines (604 loc) · 31.3 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import numpy as np
from collections import deque
import matplotlib.pyplot as plt
import pandas as pd
import os
from datasets import load_dataset
from datasets import load_dataset
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d
def get_real_building_data(duration, pred_hrz, sampling_rate, mode, occupancy='occupied', batch_id=0, batch_number=10):
# Read the data
temp_data = pd.read_csv('temp_data.csv')
# Combine 'Date' and 'Time' columns and ensure they are in the correct format
temp_data['Timestamp'] = pd.to_datetime(temp_data['Date'] + ' ' + temp_data['Time'], format='%Y-%m-%d 0 days %H:%M:%S', errors='coerce')
# Drop rows where 'Timestamp' could not be parsed
temp_data = temp_data.dropna(subset=['Timestamp'])
# Sort the data by Timestamp to ensure the sequence is correct
temp_data = temp_data.sort_values(by='Timestamp')
# Ensure unique timestamps after parsing
temp_data = temp_data.drop_duplicates(subset=['Timestamp'])
# Identify the longest sequence of consecutive zeros in 'Fan (sec)'
temp_data['is_zero'] = temp_data['Fan (sec)'] == 0
temp_data['group'] = (temp_data['is_zero'] != temp_data['is_zero'].shift()).cumsum()
# Filter groups where 'Fan (sec)' is zero and calculate the size of each group
zero_groups = temp_data[temp_data['is_zero']].groupby('group').size()
# Find the group with the longest sequence of zeros
longest_zero_group = zero_groups.idxmax()
longest_zero_duration = zero_groups.max()
# Extract the data corresponding to the longest sequence of zeros
longest_zero_data = temp_data[temp_data['group'] == longest_zero_group]
# Drop the auxiliary columns used for calculations
longest_zero_data = longest_zero_data.drop(columns=['is_zero', 'group'])
#print the beginning and end of longest_zero_data
#print(longest_zero_data.head())
#print(longest_zero_data.tail())
#print the duration of longest_zero_data in hours
#print((longest_zero_data['Timestamp'].iloc[-1] - longest_zero_data['Timestamp'].iloc[0]).days)
# Ensure the 'Date' column is in datetime format
temp_data['Date'] = pd.to_datetime(temp_data['Date'], errors='coerce')
if mode == 'off':
dataset = longest_zero_data
elif mode == 'heat' and occupancy == 'occupied':
filtered_data = temp_data[(temp_data['Date'] >= pd.to_datetime('2023-11-02')) & (temp_data['Date'] < pd.to_datetime('2023-12-16'))]
dataset = filtered_data
elif mode == 'heat' and occupancy == 'unoccupied':
filtered_data = temp_data[(temp_data['Date'] >= pd.to_datetime('2023-12-17')) & (temp_data['Date'] < pd.to_datetime('2024-01-02'))]
dataset = filtered_data
len_gt = int(pred_hrz * 3600 / sampling_rate)
len_data = int(duration * 3600 / sampling_rate)
# Resample only numeric columns
numeric_columns = ['Thermostat Temperature (F)', 'Outdoor Temp (F)', 'Fan (sec)', 'Heat Set Temp (F)']
if sampling_rate != 300:
dataset_resampled = dataset.set_index('Timestamp')[numeric_columns].resample(f'{sampling_rate}S').mean().reset_index()
else:
dataset_resampled = dataset[numeric_columns + ['Timestamp']]
# Interpolate the nan values in the dataset
dataset_resampled = dataset_resampled.interpolate()
# Ensure no duplicates after resampling
dataset_resampled = dataset_resampled.drop_duplicates(subset=['Timestamp'])
# Calculate batch size in terms of number of samples
total_size = len(dataset_resampled)
max_start_point = total_size - (len_data + len_gt)
interval = max_start_point // (batch_number - 1)
# Create start points
start_points = [i * interval for i in range(batch_number)]
start_points[-1] = max_start_point
data_start = start_points[batch_id]
data_end = data_start + len_data
test_data_start = data_end
test_data_end = test_data_start + len_gt
# Extract the required columns and timestamp for data and test_data within the batch
data = dataset_resampled[['Thermostat Temperature (F)', 'Outdoor Temp (F)', 'Fan (sec)', 'Heat Set Temp (F)', 'Timestamp']].values[data_start:data_end]
test_data = dataset_resampled[['Thermostat Temperature (F)', 'Outdoor Temp (F)', 'Fan (sec)', 'Heat Set Temp (F)', 'Timestamp']].values[test_data_start:test_data_end]
return data, test_data
def get_electricity_data(duration, pred_hrz, sampling_rate, occupancy, batch_id=0, batch_number=10):
# Read the data
sense_data = pd.read_csv('sense_data.csv')
# Ensure 'Timestamp' column is in datetime format
sense_data['Timestamp'] = pd.to_datetime(sense_data['Timestamp'], errors='coerce')
# Drop rows where 'Timestamp' could not be parsed
sense_data = sense_data.dropna(subset=['Timestamp'])
# Ensure unique timestamps after parsing
sense_data = sense_data.drop_duplicates(subset=['Timestamp'])
# Extract the date part for filtering purposes
sense_data['Date'] = sense_data['Timestamp'].dt.date
# Convert filtering dates to datetime.date for comparison
start_unoccupied = pd.to_datetime('2023-12-17').date()
end_unoccupied = pd.to_datetime('2024-01-02').date()
start_occupied = pd.to_datetime('2024-01-03').date()
end_occupied = pd.to_datetime('2024-02-03').date()
# Filter the data based on the occupancy parameter
if occupancy == 'unoccupied':
filtered_data = sense_data[(sense_data['Date'] >= start_unoccupied) & (sense_data['Date'] < end_unoccupied)]
else:
filtered_data = sense_data[(sense_data['Date'] >= start_occupied) & (sense_data['Date'] < end_occupied)]
# Interpolate missing values
filtered_data = filtered_data.interpolate()
# Calculate the length of data needed
len_data = int(duration * 3600 / sampling_rate)
len_gt = int(pred_hrz * 3600 / sampling_rate)
# Resample the data to the desired sampling rate if needed
if sampling_rate != 300:
filtered_data = filtered_data.set_index('Timestamp')
numeric_columns = filtered_data.select_dtypes(include=[np.number]).columns
filtered_data = filtered_data[numeric_columns].resample(f'{sampling_rate}S').mean().reset_index()
# Ensure no duplicates after resampling
filtered_data = filtered_data.drop_duplicates(subset=['Timestamp'])
# Ensure timestamps are consecutive
expected_interval = pd.Timedelta(seconds=sampling_rate)
actual_intervals = filtered_data['Timestamp'].diff().dropna()
if not (actual_intervals == expected_interval).all():
all_timestamps = pd.date_range(start=filtered_data['Timestamp'].min(), end=filtered_data['Timestamp'].max(), freq=f'{sampling_rate}S')
filtered_data = filtered_data.set_index('Timestamp').reindex(all_timestamps).interpolate().reset_index()
filtered_data.rename(columns={'index': 'Timestamp'}, inplace=True)
# Calculate total number of rows
total_size = len(filtered_data)
# Calculate start points based on the new algorithm
max_start_point = total_size - (len_data + len_gt)
interval = max_start_point // (batch_number - 1)
start_points = [i * interval for i in range(batch_number)]
start_points[-1] = max_start_point
data_start = start_points[batch_id]
data_end = data_start + len_data
test_data_start = data_end
test_data_end = test_data_start + len_gt
# Ensure we have enough data
if total_size < len_data + len_gt:
raise ValueError("Not enough data available for the specified duration and prediction horizon")
# Convert to numpy arrays
data = filtered_data[['Active Power', 'Timestamp']].values[data_start:data_end]
test_data = filtered_data[['Active Power', 'Timestamp']].values[test_data_start:test_data_end]
# import pdb; pdb.set_trace()
return data, test_data
import pdb
def get_season(month):
if month in [12, 1, 2]:
return 'Winter'
elif month in [3, 4, 5]:
return 'Spring'
elif month in [6, 7, 8]:
return 'Summer'
elif month in [9, 10, 11]:
return 'Fall'
def sample_by_season(df, dataset='uci'):
from config import house_ids_uci, house_ids_pecan, house_ids_umass
if dataset == 'uci':
house_id_list = house_ids_uci
start = 4e4
elif dataset == 'umass':
house_id_list = house_ids_umass
start = 0
else:
house_id_list = house_ids_pecan
start = 0
offset = 4*24*10
period = (len(df)-offset-start) // 16
whole_indices, whole_seasons = {}, {}
for h_i in range(len(house_id_list)):
indices = []
for i in range(0, 16):
indices.extend(sorted(np.random.randint(i*period+start, (i+1)*period+start, 1).tolist()))
_df = df.copy()
_df['Month'] = _df['TS'].dt.month
# Apply the helper function to get the season for the specified indices
seasons = [get_season(_df.loc[idx, 'Month']) for idx in indices]
whole_indices[house_id_list[h_i]] = indices
whole_seasons[house_id_list[h_i]] = seasons
indices_df = pd.DataFrame(whole_indices)
season_df = pd.DataFrame(whole_seasons)
indices_df.to_csv(f'./data/{dataset}_indices.csv',index=False)
season_df.to_csv(f'./data/{dataset}_season.csv', index=False)
return whole_indices, whole_seasons
def get_uci_electricity_data(duration, pred_hrz, sampling_rate, house_id=1, occupancy=None, batch_id=0, batch_number=10, data_df=None):
from config import elec_uci_indices, elec_uci_season
id_num = house_id
assert house_id >= 1 and house_id <= 370
house_id = str(house_id)
house_id = 'MT_'+'0'*(3-len(house_id)) + house_id
# Read the data, considering the specific delimiter and the first line as header
# df = pd.read_csv(file_path, delimiter=';', header=0)
assert data_df is not None
df = data_df.copy()
df.rename(columns={df.columns[0]: 'TS'}, inplace=True)
df = df[['TS', house_id]]
# Set MT_001 to float
df[house_id] = df[house_id].str.replace(',', '.').astype(float)
df['TS'] = pd.to_datetime(df['TS'])
# print(sample_by_season(df))
# pdb.set_trace()
csv_path = './data/uci_indices.csv'
df_indices = pd.read_csv(csv_path)
df = df.iloc[df_indices[str(id_num)][batch_id]:-1,:]
df.set_index('TS', inplace=True)
# resampled_df = df.resample(f'{sampling_rate}s').asfreq().fillna(0).reset_index()
resampled_df = df.resample(f'{sampling_rate}s').mean().interpolate(method='time').fillna(0).reset_index()
# search for the first non-zero row
first_non_zero_index = resampled_df[resampled_df[house_id] != 0].index[0]
# Calculate the length of data needed
len_data = int(duration * 3600 / sampling_rate)
len_gt = int(pred_hrz * 3600 / sampling_rate)
start_points = first_non_zero_index
data = resampled_df[[house_id, 'TS']].values[start_points:start_points+len_data]
test_data = resampled_df[[house_id, 'TS']].values[start_points+len_data:start_points+len_data+len_gt]
return data, test_data
def get_ecobee_temp_data(duration, pred_hrz, sampling_rate, house_id=1, occupancy=None, batch_id=0, data_df=None):
# Read the text file into a DataFrame
file_path = 'data/combined_thermostat_data.csv' # Assuming the file is saved with this name
start_points_file = 'data/start_points.csv'
if data_df is None:
# Read the data
df = pd.read_csv(file_path)
else:
df = data_df
unique_ids = df['id'].unique()
house_id_str = unique_ids[house_id-1]
if not os.path.exists(start_points_file):
# Initialize the starting points file if it doesn't exist
start_points = pd.DataFrame(columns=['house_id', 'month', 'start_point'])
else:
# Load existing starting points
start_points = pd.read_csv(start_points_file)
# Check if starting points exist for the given house_id
if not (start_points['house_id'] == house_id_str).any():
# Sample starting points for each month
sampled_points = []
for month in range(1, 13):
month_data = df[(df['id'] == house_id_str) & (pd.to_datetime(df['time']).dt.month == month)]
if month_data.empty:
continue
if month == 12:
# Ensure the starting point is at least a week before the end of the month
end_of_month = pd.to_datetime(month_data['time']).max()
valid_end_date = end_of_month - pd.Timedelta(days=16)
month_data = month_data[pd.to_datetime(month_data['time']) <= valid_end_date]
sampled_point = month_data['time'].sample(n=1).values[0]
sampled_points.append([house_id_str, month, sampled_point])
# Save the starting points
new_start_points = pd.DataFrame(sampled_points, columns=['house_id', 'month', 'start_point'])
start_points = pd.concat([start_points, new_start_points], ignore_index=True)
start_points.to_csv(start_points_file, index=False)
else:
# Retrieve existing starting points
sampled_points = start_points[start_points['house_id'] == house_id_str]
# Ensure sampled_points is a DataFrame with proper column names
sampled_points = pd.DataFrame(sampled_points, columns=['house_id', 'month', 'start_point'])
# Debug statement to print the sampled_points DataFrame
#print("Sampled Points DataFrame:\n", sampled_points)
# Get the starting point for the given batch_id
sampled_points = sampled_points.sort_values(by=['month'])
start_point = sampled_points.iloc[batch_id % len(sampled_points)]['start_point']
# Filter data for the house and start from the sampled point
house_data = df[(df['id'] == house_id_str) & (df['time'] >= start_point)].copy()
# Convert 'time' column to datetime
house_data['time'] = pd.to_datetime(house_data['time'])
# Check and resample if necessary
if sampling_rate != 300:
house_data = house_data.set_index('time').resample(f'{sampling_rate}s').agg({
'temperature': 'mean',
'state': 'first',
'id': 'first'
}).reset_index()
#interpolate the missing values
house_data['temperature'] = house_data['temperature'].interpolate()
# Calculate the length of data needed
len_data = int(duration * 3600 / sampling_rate)
len_gt = int(pred_hrz * 3600 / sampling_rate)
# Extract the required data and test data
data = house_data[['temperature', 'time']].iloc[:len_data].values
#print(f"data head for batch {batch_id}", data[0])
test_data = house_data[['temperature', 'time']].iloc[len_data:len_data+len_gt].values
return data, test_data
def get_pecan_data(duration, pred_hrz, sampling_rate, house_id=1, occupancy=None, batch_id=0, batch_number=10, data_df=None):
id_num = house_id
house_id = str(house_id)
house_id = 'MT_'+'0'*(3-len(house_id)) + house_id
# Read the data, considering the specific delimiter and the first line as header
# df = pd.read_csv(file_path, delimiter=';', header=0)
assert data_df is not None
df = data_df.copy()
df.rename(columns={df.columns[0]: 'TS'}, inplace=True)
df['TS'] = pd.to_datetime(df['TS'])
# print(sample_by_season(df, dataset='pecan'))
df = df[['TS', house_id]]
csv_path = './data/pecan_indices.csv'
df_indices = pd.read_csv(csv_path)
df = df.iloc[df_indices[str(id_num)][batch_id]:-1,:]
df.set_index('TS', inplace=True)
# resampled_df = df.resample(f'{sampling_rate}s').asfreq().fillna(0).reset_index()
resampled_df = df.resample(f'{sampling_rate}s').mean().interpolate(method='time').fillna(0).reset_index()
# search for the first non-zero row
first_non_zero_index = resampled_df[resampled_df[house_id] != 0].index[0]
# Calculate the length of data needed
len_data = int(duration * 3600 / sampling_rate)
len_gt = int(pred_hrz * 3600 / sampling_rate)
start_points = first_non_zero_index
data = resampled_df[[house_id, 'TS']].values[start_points:start_points+len_data]
test_data = resampled_df[[house_id, 'TS']].values[start_points+len_data:start_points+len_data+len_gt]
return data, test_data
def get_umass_data(duration, pred_hrz, sampling_rate, house_id=1, occupancy=None, batch_id=0, batch_number=10, data_df=None):
id_num = house_id
house_id = str(house_id)
house_id = 'MT_'+'0'*(3-len(house_id)) + house_id
# Read the data, considering the specific delimiter and the first line as header
# df = pd.read_csv(file_path, delimiter=';', header=0)
assert data_df is not None
df = data_df.copy()
df.rename(columns={df.columns[0]: 'TS'}, inplace=True)
df['TS'] = pd.to_datetime(df['TS'])
# print(sample_by_season(df, dataset='umass'))
# pdb.set_trace()
df = df[['TS', house_id]]
csv_path = './data/umass_indices.csv'
df_indices = pd.read_csv(csv_path)
df = df.iloc[df_indices[str(id_num)][batch_id]:-1,:]
df.set_index('TS', inplace=True)
# resampled_df = df.resample(f'{sampling_rate}s').asfreq().fillna(0).reset_index()
resampled_df = df.resample(f'{sampling_rate}s').mean().interpolate(method='time').fillna(0).reset_index()
# search for the first non-zero row
if len(resampled_df[resampled_df[house_id] != 0]) == 0:
first_non_zero_index = 0
else:
first_non_zero_index = resampled_df[resampled_df[house_id] != 0].index[0]
# Calculate the length of data needed
len_data = int(duration * 3600 / sampling_rate)
len_gt = int(pred_hrz * 3600 / sampling_rate)
start_points = first_non_zero_index
data = resampled_df[[house_id, 'TS']].values[start_points:start_points+len_data]
test_data = resampled_df[[house_id, 'TS']].values[start_points+len_data:start_points+len_data+len_gt]
# pdb.set_trace()
return data, test_data
def get_elecdemand_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
"""
Extracts electricity demand data from the 'Salesforce/lotsa_data' dataset, 'elecdemand' subset.
Parameters:
- duration: The duration of the data in hours.
- pred_hrz: The prediction horizon in hours.
- sampling_rate: Sampling rate in seconds. If None, the original sampling rate from the dataset is used.
- house_id: The ID of the house (defaults to 1).
- batch_id: Batch ID to extract from data (defaults to 0).
- batch_number: Number of batches (defaults to 10).
Returns:
- data: The extracted data for the specified duration.
- test_data: The test data for the prediction horizon.
"""
# Access the 'train' split of the dataset
train_data = data_df['train']
# Extract the start timestamp, frequency, and values for the selected house_id
start_timestamp = pd.to_datetime(train_data['start'][house_id-1]) # Convert start to datetime
freq = train_data['freq'][house_id-1] # Get frequency (e.g., '30T')
values = np.array(train_data['target'][house_id-1]) # Values array
# Generate the timestamps using pandas date_range with the given start and frequency
timestamps = pd.date_range(start=start_timestamp, periods=len(values), freq=freq)
# Create a DataFrame with values and timestamps
df = pd.DataFrame({'values': values, 'timestamps': timestamps})
# Handle resampling if a sampling rate is provided
if sampling_rate:
# Resample the data to the specified sampling rate
df.set_index('timestamps', inplace=True)
df = df.resample(f'{sampling_rate}S').mean().interpolate(method='time').fillna(0).reset_index()
# Get the first non-zero value as the start point
first_non_zero_index = df[df['values'] != 0].index[0]
# Calculate the number of rows to extract based on duration and prediction horizon
len_data = int(duration * 3600 / (sampling_rate or pd.to_timedelta(freq).seconds))
len_gt = int(pred_hrz * 3600 / (sampling_rate or pd.to_timedelta(freq).seconds))
# Calculate batch size in terms of number of samples
total_size = len(df)
max_start_point = total_size - (len_data + len_gt)
interval = max_start_point // (batch_number - 1)
# Create start points
start_points = [i * interval for i in range(batch_number)]
start_points[-1] = max_start_point
# Select start and end points for data and test data based on batch_id
data_start = start_points[batch_id]
data_end = data_start + len_data
test_data_start = data_end
test_data_end = test_data_start + len_gt
# Extract data and test data
data = df[['values', 'timestamps']].values[data_start:data_end]
test_data = df[['values', 'timestamps']].values[test_data_start:test_data_end]
return data, test_data
def generate_datetime_list(start_datetime, increase, num_steps, offset=0):
from datetime import datetime, timedelta
from dateutil.relativedelta import relativedelta
# Ensure start_datetime is a pandas Timestamp and has time components
if not isinstance(start_datetime, pd.Timestamp):
raise ValueError("start_datetime must be a pandas Timestamp.")
# Set time to 00:00:00 if start_datetime does not include hours, minutes, and seconds
if start_datetime.hour == 0 and start_datetime.minute == 0 and start_datetime.second == 0:
start_datetime = start_datetime.replace(hour=0, minute=0, second=0)
# Extract the number and unit from 'increase'
if increase[:-1].isdigit():
n = int(increase[:-1])
unit = increase[-1]
else:
n = 1 # Default increment if no number is provided
unit = increase
# Determine the increment based on the unit
if unit == 'H':
increment = timedelta(hours=n)
elif unit == 'T':
increment = timedelta(minutes=n)
elif unit == 'D':
increment = timedelta(days=n)
elif unit == 'M':
increment = relativedelta(months=n)
elif unit == 'A-DEC':
increment = relativedelta(years=n)
elif unit == 'W-SUN':
increment = relativedelta(weeks=n)
else:
raise ValueError("Invalid increase value. Must be in ['H', 'T', 'D', 'M', 'A-DEC', 'W-SUN'] with optional 'n' prefix.")
# Generate the list of datetime values
datetime_list = []
for i in range(num_steps):
datetime_list.append(start_datetime + (offset + i) * increment)
return datetime_list
def get_subseasonal_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
"""
Extracts weather data from the 'Salesforce/lotsa_data' dataset, 'subseasonal' subset.
Parameters:
- duration: The duration of the data in hours.
- pred_hrz: The prediction horizon in hours.
- sampling_rate: Sampling rate in seconds. If None, the original sampling rate from the dataset is used.
- house_id: The ID of the house (defaults to 1).
- batch_id: Batch ID to extract from data (defaults to 0).
- batch_number: Number of batches (defaults to 10).
Returns:
- data: The extracted data for the specified duration.
- test_data: The test data for the prediction horizon.
"""
assert batch_id <= 861
dataset = data_df['train']
dataset_pd = dataset.to_pandas()
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
data = dataset_pd['target'][batch_id][0][:tot_len]
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
def get_pems04_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
"""
Extracts weather data from the 'Salesforce/lotsa_data' dataset, 'subseasonal' subset.
Parameters:
- duration: The duration of the data in hours.
- pred_hrz: The prediction horizon in hours.
- sampling_rate: Sampling rate in seconds. If None, the original sampling rate from the dataset is used.
- house_id: The ID of the house (defaults to 1).
- batch_id: Batch ID to extract from data (defaults to 0).
- batch_number: Number of batches (defaults to 10).
Returns:
- data: The extracted data for the specified duration.
- test_data: The test data for the prediction horizon.
"""
assert batch_id <= 307
dataset = data_df['train']
dataset_pd = dataset.to_pandas()
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
data = dataset_pd['target'][batch_id][0][:tot_len]
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
def get_loop_seattle_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
"""
Extracts weather data from the 'Salesforce/lotsa_data' dataset, 'subseasonal' subset.
Parameters:
- duration: The duration of the data in hours.
- pred_hrz: The prediction horizon in hours.
- sampling_rate: Sampling rate in seconds. If None, the original sampling rate from the dataset is used.
- house_id: The ID of the house (defaults to 1).
- batch_id: Batch ID to extract from data (defaults to 0).
- batch_number: Number of batches (defaults to 10).
Returns:
- data: The extracted data for the specified duration.
- test_data: The test data for the prediction horizon.
"""
assert batch_id <= 323
dataset = data_df['train']
dataset_pd = dataset.to_pandas()
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
data = dataset_pd['target'][batch_id][:tot_len]
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
def get_rlp_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
"""
Extracts weather data from the 'Salesforce/lotsa_data' dataset, 'subseasonal' subset.
Parameters:
- duration: The duration of the data in hours.
- pred_hrz: The prediction horizon in hours.
- sampling_rate: Sampling rate in seconds. If None, the original sampling rate from the dataset is used.
- house_id: The ID of the house (defaults to 1).
- batch_id: Batch ID to extract from data (defaults to 0).
- batch_number: Number of batches (defaults to 10).
Returns:
- data: The extracted data for the specified duration.
- test_data: The test data for the prediction horizon.
"""
assert batch_id <= 271
dataset = data_df['train']
dataset_pd = dataset.to_pandas()
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
data = dataset_pd['target'][batch_id][0][:tot_len]
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
def get_covid_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
assert batch_id <= 271
dataset = data_df['train']
dataset_pd = dataset.to_pandas()
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
data = dataset_pd['target'][batch_id][:tot_len]
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
def get_c2000_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
assert batch_id <= 300
dataset_pd = data_df
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
if isinstance(dataset_pd['target'][batch_id][0], np.ndarray):
data = dataset_pd['target'][batch_id][0][:tot_len]
else:
data = dataset_pd['target'][batch_id][:tot_len]
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
def get_restaurant_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
assert batch_id <= 200
dataset_pd = data_df
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
if isinstance(dataset_pd['target'][batch_id][0], np.ndarray):
data = dataset_pd['target'][batch_id][0][:tot_len]
else:
data = dataset_pd['target'][batch_id][:tot_len]
if len(data) < tot_len:
data = np.append(data, [0] * (tot_len - len(data)))
not_nan = ~np.isnan(data)
x = np.arange(len(data))
# Applying linear interpolation
linear_interpolator = interp1d(x[not_nan], data[not_nan], kind='linear', fill_value="extrapolate")
data = linear_interpolator(x)
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
def get_air_data(duration, pred_hrz, sampling_rate=None, house_id=1, batch_id=0, batch_number=10, data_df=None):
assert batch_id <= 200
dataset_pd = data_df
start_datetime = dataset_pd['start'][batch_id]
increase = dataset_pd['freq'][0]
len_data = int(duration * 3600 / (sampling_rate))
len_gt = int(pred_hrz * 3600 / (sampling_rate))
tot_len = len_gt+len_data
datetime_list = generate_datetime_list(start_datetime, increase, num_steps=tot_len)
if isinstance(dataset_pd['target'][batch_id][0], np.ndarray):
data = dataset_pd['target'][batch_id][0][:tot_len]
else:
data = dataset_pd['target'][batch_id][:tot_len]
if len(data) < tot_len:
data = np.append(data, [0] * (tot_len - len(data)))
not_nan = ~np.isnan(data)
x = np.arange(len(data))
# Applying linear interpolation
linear_interpolator = interp1d(x[not_nan], data[not_nan], kind='linear', fill_value="extrapolate")
data = linear_interpolator(x)
data_all = np.stack([data, datetime_list]).T
return data_all[:len_data,:], data_all[len_data: tot_len, :]
if __name__ == '__main__':
file_path = './LD2011_2014.txt'
df = pd.read_csv(file_path, delimiter=';', header=0)
house_id = 'MT_001'
df = df[['TS', house_id]]
# Set MT_001 to float
df[house_id] = df[house_id].str.replace(',', '.').astype(float)
df['TS'] = pd.to_datetime(df['TS'])
df = df.iloc[:-1,:]
sample_by_season(df)
get_uci_electricity_data(duration=24, pred_hrz=4, sampling_rate=900, data_df=data_df)