-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose-extract-lf.py
executable file
·547 lines (474 loc) · 19.9 KB
/
pose-extract-lf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#!/usr/bin/env python
#
# Extract pose information from a c. elegans lightfield image
# (assuming [0,0] - i.e. frontal - viewpoint).
#
# Usage: pose-extract.py HDF5FILE FRAMENUMBER
#
# Output: A TSV-formatted file with pose control point coordinates
# is printed on stdout: one line per point with the coordinates
# in order "z y x".
# Our algorithm is:
# 1. Convert the original image to a "blob mask" with the body of the
# worm white and the rest black.
# 2. Sample uniformly random points from the blob as potential backbone
# control points.
# 3. Create a "rough backbone" by generating a complete graph on top
# of the control points, generating the minimum spanning tree (weight
# based on euclidean distances) and then taking the diameter of the
# MST as the backbone path; drop all points not part of the diameter.
# The backbone will wiggle around and meander, but it will roughly
# span the whole (visible) elongated body. This idea comes from
# Peng et al., Straightening C. elegans Images.
# 4. Annotate each pixel of the blob with the distance and direction
# of the nearest blob edge.
# 5. Move each point in the _opposite_ direction from the edge so that
# it maximizes the distance from the edge. This will put all the
# points within the area of the central axis, but not neccessarily
# in the right order due to the meandering of the original path.
# 6. Redo the step (3) with the current set and position of control
# points, generating a good backbone path.
# 7. Perform a filtering step on the path, removing control points
# which are too close to neighboring control points and inserting
# additional control points in-between each pair of points (centered
# to the middle of the worm body, too). This idea also comes from
# Peng et al.
# 8. Extend the path with points aligned with tips (or image edge)
# of the worm, to provide a frame of reference for further work with
# the body of the worm.
import math
import random
import numpy
import numpy.ma as ma
import scipy.ndimage as ndimage
import scipy.ndimage.morphology
import hdf5lflib
import networkx as nx
import cv
import cv2
import matplotlib.pyplot as plt
import matplotlib.patches
from matplotlib.path import Path
#various file processing/OS things
import os
import sys
import tables
PROGRESS_FIGURES = False
NUM_SAMPLES = 160
# Minimum distance between path control points; if two control
# points are nearer than this to each other, that is fixed during filtering.
# In a later stage, control points are added at pair mid-points, so
# effective minimum distance at the end of the algorithm may be as
# low as MIN_DISTANCE/2.
MIN_POINT_DISTANCE = 4.
# Minimum value of the line connecting two MST points. 0.9 means that
# at most 10% of the line may cross black areas. This can be used to
# prevent connections between separate blobs.
LINE_VALUE_THRESHOLD = 0.9
def print_mask(mask):
"""
A debug print function that prints out a bool array in asciiart.
"""
for row in mask:
for item in row:
sys.stdout.write('#' if item else '.')
sys.stdout.write('\n')
def edge_dist_if_within(edgedists, coord):
"""
Return edge distance at a given coord (possibly ma.masked) or
ma.masked if we are accessing outside of the image.
"""
if coord[0] < 0 or coord[1] < 0:
return ma.masked
try:
return edgedists[tuple(coord)]
except IndexError:
return ma.masked
def display_graph(ax, graph, points):
verts = []
codes = []
for i,j in graph.edges():
verts.append([points[i][1], points[i][0]])
codes.append(Path.MOVETO)
verts.append([points[j][1], points[j][0]])
codes.append(Path.LINETO)
path = Path(verts, codes)
patch = matplotlib.patches.PathPatch(path, facecolor='none', edgecolor='blue', lw=1)
ax.add_patch(patch)
def display_path(ax, pathlist, points):
verts = []
codes = []
for i in pathlist:
verts.append([points[i][1], points[i][0]])
codes.append(Path.LINETO)
codes[0] = Path.MOVETO
path = Path(verts, codes)
patch = matplotlib.patches.PathPatch(path, facecolor='none', edgecolor='green', lw=1)
ax.add_patch(patch)
def computeEdgeDistances(uvframe):
"""
Create a 2D matrix @edgedists as a companion to @uvframe,
containing for each pixel a distance to the nearest edge (more precisely,
the nearest 0-valued pixel).
We compute @edgedists in a floodfill fashion spreading from zero-areas
to the middle of one-areas iteratively, with distances approximated
on the pixel grid.
We return a tuple (edgedists, edgedirs), where edgedirs contains information
about the relative offset of the nearest edge piece.
"""
# edgedists is a masked array, with only already computed values unmasked;
# at first, uvframe == 0 already are computed (as zeros)
edgedists = ma.array(numpy.zeros(uvframe.shape, dtype = numpy.float), mask = (uvframe > 0))
edgedirs = ma.array(numpy.zeros(uvframe.shape, dtype = (numpy.float, 2)), mask = [[[j,j] for j in i] for i in uvframe > 0])
#numpy.set_printoptions(threshold=numpy.nan)
#print edgedists
#print edgedirs
flood_spread = scipy.ndimage.morphology.generate_binary_structure(2, 2)
neighbor_ofs = [[-1,-1],[-1,0],[-1,1], [0,-1],[0,0],[0,1], [1,-1],[1,0],[1,1]]
s2 = math.sqrt(2)
neighbor_dist = [s2,1,s2, 1,0,1, s2,1,s2]
while ma.getmaskarray(edgedists).any():
# scan masked area for any elements that have unmasked neighbors
done_mask = numpy.invert(ma.getmaskarray(edgedists))
todo_mask = done_mask ^ scipy.ndimage.binary_dilation(done_mask, flood_spread)
#print_mask(todo_mask)
for i in numpy.transpose(numpy.nonzero(todo_mask)):
neighbor_val = ma.array([
edge_dist_if_within(edgedists, i + ofs) + dist
for ofs, dist in zip(neighbor_ofs, neighbor_dist)
])
nearestnei = ma.argmin(neighbor_val)
# We assert that this update never affects value other fields
# visited later in this iteration of floodfill
edgedists[tuple(i)] = neighbor_val[nearestnei]
nearestneicoord = i + neighbor_ofs[nearestnei]
#print "-", nearestneicoord, edgedirs[tuple(nearestneicoord)]
edgedirs[tuple(i)] = edgedirs[tuple(nearestneicoord)] + tuple(neighbor_ofs[nearestnei])
#print "+", i, edgedirs[tuple(i)]
return (edgedists.data, edgedirs.data)
def sampleRandomPoint(uvframe):
"""
Return a coordinate tuple of a random point with non-zero value in uvframe.
"""
while True:
c = (random.randint(0, uvframe.shape[0]-1), random.randint(0, uvframe.shape[1]-1))
if uvframe[c] > 0:
return c
def pointSquaredDistance(point0, point1):
return (point0[0] - point1[0]) ** 2 + (point0[1] - point1[1]) ** 2
def lineSumValue(point0, point1, uvframe):
"""
Return a line integral between point0 and point1 on uvframe.
"""
delta = math.sqrt(pointSquaredDistance(point0, point1))
walkDir = numpy.array([point1[0] - point0[0], point1[1] - point0[1]], dtype = 'float')
walkDir /= max(numpy.fabs(walkDir)) # normalize to 1-pixel stepping
walkDim = math.sqrt(walkDir[0]**2 + walkDir[1]**2)
coord = point0 + walkDir
walked = 0.
value = walkDim
while walked < delta:
if coord[0] >= 0 and coord[1] >= 0:
try:
value += uvframe[tuple(numpy.floor(coord))] * walkDim
except IndexError:
#print 'index error'
break
else:
#print 'oob skip'
pass
walked += walkDim
coord += walkDir
#print walkDir, walkDim, delta, walked, value
return value
def pointsDeduplicate(points):
# Filter out duplicate points
for i in range(len(points)):
if points[i] is None:
continue
for j in range(i+1, len(points)):
if points[j] is None:
continue
if points[i] == points[j]:
points[j] = None
continue
return points
def pointsToBackbone(points, uvframe):
# Generate a complete graph over these points,
# weighted by Euclidean distances
g = nx.Graph()
# Graph vertices are point numbers, except points which are set to None
nodes = filter(lambda x: points[x] is not None, range(len(points)))
g.add_nodes_from(nodes)
for i in range(len(points)):
if points[i] is None:
continue
for j in range(i+1, len(points)):
# TODO: scipy's cpair? but we will need to construct
# a graph anyway
if points[j] is None:
continue
# Eschew lines crossing dark areas
lineSum = lineSumValue(points[i], points[j], uvframe)
# print i, j, points[i], points[j], lineSum, math.sqrt(pointSquaredDistance(points[i], points[j]) * (LINE_VALUE_THRESHOLD ** 2))
if lineSum ** 2 < pointSquaredDistance(points[i], points[j]) * (LINE_VALUE_THRESHOLD ** 2):
#print '-->'
continue
g.add_edge(i, j, {'weight': math.pow(points[i][0]-points[j][0], 2) + math.pow(points[i][1]-points[j][1], 2)})
# Reduce the complete graph to MST
gmst = nx.minimum_spanning_tree(g)
# Show the MST
# f = plt.figure()
# imgplot = plt.imshow(uvframe, cmap=plt.cm.gray)
# display_graph(f.add_subplot(111), gmst, points)
# plt.show()
# Diameter of the minimum spanning tree will generate
# a "likely pose walk" through the graph
tip0 = max(nx.single_source_dijkstra_path_length(gmst, nodes[0]).items(), key=lambda x:x[1])[0] # funky argmax
(tip1_lengths, tip1_paths) = nx.single_source_dijkstra(gmst, tip0)
tip1 = max(tip1_lengths.items(), key=lambda x:x[1])[0]
backbone = tip1_paths[tip1]
return backbone
def edgedistsInterpolate(edgedists, point):
"""
2x2 interpolation of distance for non-integer point coordinates.
"""
beta_y = math.ceil(point[0]) - point[0]
beta_x = math.ceil(point[1]) - point[1]
try:
curdist = (beta_y * beta_x * edgedists[math.floor(point[0]), math.floor(point[1])]
+ beta_y * (1.-beta_x) * edgedists[math.floor(point[0]), math.ceil(point[1])]
+ (1.-beta_y) * beta_x * edgedists[math.ceil(point[0]), math.floor(point[1])]
+ (1.-beta_y) * (1.-beta_x) * edgedists[math.ceil(point[0]), math.ceil(point[1])]) / 4.
except IndexError:
return None
return curdist
def gradientAscent(edgedists, edgedirs, point):
"""
We want to move the point along the gradient from the edge of the worm
to the center. However, simple non-guided gradient ascend will obviously
make all the points converge in some middle point; we do not want to
move along the A-P axis. Therefore, we instead move _from_ the nearest
edge.
Note that points may not have integer coordinates after a gradientAscent.
"""
bestDist = None
bestPoint = None
# From now on, point may be a non-integer; however we always return an int
max_steps = max(edgedists.shape)
steps = 0
while steps < max_steps:
intpoint = [round(point[0]), round(point[1])]
curdist = edgedistsInterpolate(edgedists, point)
if bestDist is not None and curdist < bestDist:
break
bestDist = curdist
bestPoint = point
if max(abs(edgedirs[tuple(intpoint)])) == 0:
# We might have been at a ledge, now we are out of the worm; discard
#print "edgedirs zero"
return None
walkDir = edgedirs[tuple(intpoint)] / max(abs(edgedirs[tuple(intpoint)]))
point = [point[0] - walkDir[0], point[1] - walkDir[1]]
#print ">", bestPoint, bestDist, walkDir, point, curdist
if point < [0,0] or point[0] >= edgedists.shape[0] or point[1] >= edgedists.shape[1]:
# Throw away points that walk out of the picture
#print "point out of bounds", point, edgedists.shape
return None
steps += 1
return bestPoint
def filterPath(path, points, edgedists, edgedirs, uvframe):
"""
If two successive points in the path are nearer than MIN_POINT_DISTANCE,
one of them is removed. Then, an extra point is added inbetween each
pair of points and gradient-ascended to the middle of the worm.
"""
# Remove points that are too close
i = 0
while i < len(path)-1:
point0 = points[path[i]]
point1 = points[path[i+1]]
distance = (point0[0] - point1[0]) ** 2 + (point0[1] - point1[1]) ** 2
if distance < MIN_POINT_DISTANCE ** 2:
# Make sure we never remove the (currently) tip control points
if i == 0:
ofs = 1
elif i == len(path)-1:
ofs = 0
else:
ofs = random.randint(0, 1)
path.pop(i + ofs)
else:
i += 1
# Insert points in midway
newpath = []
for i in range(len(path)-1):
point0 = points[path[i]]
point1 = points[path[i+1]]
point_mid = [round((point0[0] + point1[0]) / 2), round((point0[1] + point1[1]) / 2)]
point_mid = gradientAscent(edgedists, edgedirs, point_mid)
points.append(point_mid)
newpath.append(path[i])
newpath.append(len(points)-1)
newpath.append(path[len(path)-1])
return newpath
def extendToTip(ipoint0, ipoint1, points, edgedists, edgedirs, uvframe):
"""
Return a point at a tip (boundary) of the worm or an edge of the picture,
walking from point1 in the (point0->point1) direction, maximizing
distance from point1 in a per-step 45\deg cone.
"""
point0 = points[ipoint0]
point1 = points[ipoint1]
walkDir = numpy.array([point1[0] - point0[0], point1[1] - point0[1]], dtype = 'float')
walkDir /= max(numpy.fabs(walkDir)) # normalize to 1-pixel stepping
walkDirSq = walkDir[0]**2 + walkDir[1]**2
walkDirDim = math.sqrt(walkDirSq)
#print "point0", point0, "point1", point1, "walkDir", walkDir, "walkDirDim", walkDirDim
point = point1
dist = edgedistsInterpolate(edgedists, point)
while dist > 0:
#print "STEP", dist, point
if point[0] < 1. or point[1] < 1. or point[0] >= edgedists.shape[0] - 1. or point[1] >= edgedists.shape[1] - 1.:
break
nextpoint = point + walkDir
# Also consider other points that neighbor both point and
# nextpoint, implementing the cone search.
nextpointset = [nextpoint]
nextpointround = [round(nextpoint[0]), round(nextpoint[1])]
if nextpoint[0] == 0:
yset = [-walkDirDim, walkDirDim]
else:
yset = [nextpoint[0]-point[0], 0]
if nextpoint[1] == 0:
xset = [-walkDirDim, walkDirDim]
else:
xset = [nextpoint[1]-point[1], 0]
nextpointset += [nextpoint + [y,x] for x in xset for y in yset]
nextpoints = []
for p in nextpointset:
p_edgedist = edgedistsInterpolate(edgedists, p)
#print "considering", p, p_edgedist
if p_edgedist == 0 or p_edgedist is None:
# We are at the border, bye!
return point
nextpoints.append((p, p_edgedist))
# Pick the one furthest away from the edge
(point, dist) = max(nextpoints, key = lambda x: x[1])
#print point, dist, "---", nextpoints
return point
def addPoint(points, coord):
points.append(coord)
return len(points)-1
def poseExtract(uvframe, edgedists, edgedirs):
"""
Output a sequence of coordinates of pose curve control points.
"""
# Pick a random sample of points
points = [sampleRandomPoint(uvframe) for i in range(NUM_SAMPLES)]
# Generate a backbone from the points set
points = pointsDeduplicate(points)
backbone = pointsToBackbone(points, uvframe)
#print backbone
# Show the backbone
if PROGRESS_FIGURES:
f = plt.figure()
imgplot = plt.imshow(uvframe, cmap=plt.cm.gray)
display_path(f.add_subplot(111), backbone, points)
plt.show()
# Remove points not used in the backbone path
for i in list(set(range(len(points))) - set(backbone)):
points[i] = None
# Refine points on backbone by fixed-direction gradient ascend
# over edgedists
for i in backbone:
#print "---", i, points[i]
points[i] = gradientAscent(edgedists, edgedirs, points[i])
#print "->", points[i]
points = pointsDeduplicate(points)
# Show the backbone
if PROGRESS_FIGURES:
f = plt.figure()
imgplot = plt.imshow(edgedists)
display_path(f.add_subplot(111), filter(lambda i: points[i] is not None, backbone), points)
plt.show()
# Redo the complete graph - MST - diameter with final graph
# to get straight tracing
backbone = pointsToBackbone(points, uvframe)
# Show the backbone
if PROGRESS_FIGURES:
f = plt.figure()
imgplot = plt.imshow(edgedists)
display_path(f.add_subplot(111), backbone, points)
plt.show()
# Filter the path by removing points too close to each other
# and inserting points midway (gradient-ascended while at it).
backbone = filterPath(backbone, points, edgedists, edgedirs, uvframe)
# Add some extra control points at both tips of the worm (or a tip and an edge)
backbone = [
addPoint(points, extendToTip(backbone[1], backbone[0], points, edgedists, edgedirs, uvframe))
] + backbone + [
addPoint(points, extendToTip(backbone[len(backbone)-2], backbone[len(backbone)-1], points, edgedists, edgedirs, uvframe))
]
# Remove identical successive points
backbone = [backbone[0]] + [ backbone[i] for i in range(1, len(backbone)) if numpy.any(points[backbone[i]] != points[backbone[i-1]]) ]
# Show the backbone
if PROGRESS_FIGURES:
f = plt.figure()
imgplot = plt.imshow(edgedists)
display_path(f.add_subplot(111), backbone, points)
plt.show()
# TODO: Extend tips by slowest-rate gradient descent
return map(lambda i: points[i], backbone)
def printTSV(backbone, edgedists):
for point in backbone:
print 0, point[0], point[1], edgedists[tuple(point)]
def processFrame(i, node, ar, cw):
uvframe = hdf5lflib.compute_uvframe(node, ar, cw)
if PROGRESS_FIGURES:
plt.figure()
imgplot = plt.imshow(uvframe, cmap=plt.cm.gray)
plt.show()
# Smooth twice
uvframe = cv2.medianBlur(uvframe, 5)
uvframe = cv2.medianBlur(uvframe, 5)
if PROGRESS_FIGURES:
plt.figure()
imgplot = plt.imshow(uvframe, cmap=plt.cm.gray)
plt.show()
# Threshold
background_color = uvframe.mean()
foreground_i = uvframe > background_color
uvframe[foreground_i] = 255.
uvframe[numpy.invert(foreground_i)] = 0.
# Fill holes in "dead" regions of the worm
uvframe = scipy.ndimage.morphology.binary_fill_holes(uvframe)
if PROGRESS_FIGURES:
plt.figure()
imgplot = plt.imshow(uvframe, cmap=plt.cm.gray)
plt.show()
# Annotate with information regarding the nearest edge
(edgedists, edgedirs) = computeEdgeDistances(uvframe)
if PROGRESS_FIGURES:
fig, axes = plt.subplots(ncols = 2)
axes[0].imshow(uvframe, cmap=plt.cm.gray)
axes[1].imshow(edgedists)
plt.show()
# Determine the backbone
backbone = poseExtract(uvframe, edgedists, edgedirs)
# Convert to TSV and output
printTSV(backbone, edgedists)
def processFile(filename, frameNo):
h5file = tables.open_file(filename, mode = "r")
ar = h5file.get_node('/', '/autorectification')
try:
cw = h5file.get_node('/', '/cropwindow')
except tables.NoSuchNodeError:
cw = None
processFrame(frameNo, h5file.get_node('/', '/images/' + str(frameNo)), ar, cw)
return True
if __name__ == '__main__':
filename = sys.argv[1]
frameNo = int(sys.argv[2])
if not processFile(filename, frameNo):
sys.exit(1)