-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcalib.py
76 lines (58 loc) · 2.23 KB
/
calib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 15 14:33:52 2019
@author: x
"""
import cv2
import numpy as np
import glob
#import matplotlib.pyplot as plt
#import matplotlib.patches as patches
# 找棋盘格角点
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # 阈值
#棋盘格模板规格
w = 9 # 10 - 1
h = 6 # 7 - 1
# 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w*h,3), np.float32)
objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2)
objp = objp*25 # 18.1 mm
# 储存棋盘格角点的世界坐标和图像坐标对
objpoints = [] # 在世界坐标系中的三维点
imgpoints = [] # 在图像平面的二维点
images = glob.glob('./calib_jpg/*.jpg') # 拍摄的十几张棋盘图片所在目录
i = 1
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 找到棋盘格角点
ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
# 如果找到足够点对,将其存储起来
if ret == True:
print("i:", i)
i = i+1
cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
objpoints.append(objp)
imgpoints.append(corners)
# 将角点在图像上显示
cv2.drawChessboardCorners(img, (w,h), corners, ret)
cv2.namedWindow('findCorners', cv2.WINDOW_NORMAL)
cv2.resizeWindow('findCorners', 640, 360) #
cv2.imshow('findCorners',img)
cv2.waitKey(100)
cv2.destroyAllWindows()
#%% 标定
ret, mtx, dist, rvecs, tvecs = \
cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
print("ret:", ret)
print("mtx:\n", mtx) # 内参数矩阵
print("dist:\n", dist) # 畸变系数 distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
#print("rvecs:\n",rvecs) # 旋转向量 # 外参数
#print("tvecs:\n",tvecs ) # 平移向量 # 外参数
# mtx = np.array([
# [1.14183754e+03, 0.00000000e+00, 6.28283670e+02],
# [0.00000000e+00, 1.13869492e+03, 3.56277189e+02],
# [0.00000000e+00, 0.00000000e+00, 1.00000000e+00],
# ])
# dist = np.array([ 8.73438827e-02,-4.44308237e-01,-2.84493359e-04,
# -6.76058846e-04,-3.27616998e-01])