-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh_glad_dc.py
279 lines (209 loc) · 12.5 KB
/
h_glad_dc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import time
import copy
import argparse
import numpy as np
import torch
import torch.nn as nn
from torchvision.utils import save_image
from utils import get_loops, get_dataset, get_network, get_eval_pool, evaluate_synset, match_loss, get_time, \
TensorDataset, epoch, DiffAugment, ParamDiffAug
from tqdm import tqdm
import torchvision
import random
import gc
from h_glad_utils import *
def main(args):
# 设置随机数种子使每次实验结果相同
torch.random.manual_seed(0)
np.random.seed(0)
random.seed(0)
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
args.dsa_param = ParamDiffAug()
args.dsa = False if args.dsa_strategy in ['none', 'None'] else True
if not os.path.exists(args.data_path):
os.mkdir(args.data_path)
run_dir = "{}-{}".format(time.strftime("%Y%m%d-%H%M%S"), 'GLaD-DC')
# 设定蒸馏方法的保存路径
args.save_path = os.path.join(args.save_path, "dc", run_dir)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
# 设定评估epoch
eval_it_pool = np.arange(0, args.Iteration + 1, args.eval_it).tolist()
channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test, testloader, loader_train_dict, class_map, class_map_inv = get_dataset(
args.dataset, args.data_path, args.batch_real, args.res, args=args)
model_eval_pool = get_eval_pool(args.eval_mode, args.model, args.model)
accs_all_exps = dict() # record performances of all experiments
# 为模型评估池中每个关键字添加列表
for key in model_eval_pool:
accs_all_exps[key] = []
data_save = []
args.distributed = torch.cuda.device_count() > 1
# 在像素级优化不需要使用GAN
if args.space == 'p':
G, zdim = None, None
# latent的采样空间来自styleGAN_xl的w空间
elif args.space == 'wp':
G, zdim, w_dim, num_ws = load_sgxl(args.res, args)
images_all, labels_all, indices_class = build_dataset(dst_train, class_map, num_classes)
origin_features = get_feature(num_classes=num_classes, indices_class=indices_class, images_all=images_all,
channel=channel, im_size=im_size, DiffAugment=DiffAugment, args=args)
real_train_loader = torch.utils.data.DataLoader(dst_train, batch_size=args.batch_train, shuffle=True,
num_workers=16)
def get_images(c, n): # get random n images from class c
idx_shuffle = np.random.permutation(indices_class[c])[:n]
return images_all[idx_shuffle].to(args.device)
latents, f_latents, label_syn = prepare_latents(layer=1, channel=channel, num_classes=num_classes, im_size=im_size, zdim=zdim, G=G, class_map_inv=class_map_inv, get_images=get_images, args=args)
criterion = nn.CrossEntropyLoss().to(args.device)
print('%s training begins' % get_time())
print('Hyper-parameters: \n', args.__dict__)
print('Evaluation model pool: ', model_eval_pool)
print('%s training begins' % get_time())
best_acc = {"{}".format(m): 0 for m in model_eval_pool}
best_std = {m: 0 for m in model_eval_pool}
eval_pool_dict = get_eval_lrs(args)
save_this_it = False
num_layers = latents.shape[1] - 1
best_layer = 0
best_score = 0
flag = 0
# _, best_score = choose_optimal(layer=1, latents=latents, f_latents=f_latents, label_syn=label_syn, G=G,
# best_score=best_score, testloader=testloader, model_eval_pool=model_eval_pool,
# channel=channel, num_classes=num_classes,
# im_size=im_size, args=args)
scores = []
for layer in range(1, num_layers):
# 记录每一层的latents和f_latents
results = []
dist_min = float("inf")
record = 0
print(latents.shape, f_latents.shape, layer)
optimizer_img = get_optimizer_img(latents=latents, f_latents=f_latents, G=G, args=args)
for it in range(args.inter_iteration + 1):
results.append((latents, f_latents))
if it == 0:
image_logging(it=0, layer=layer, latents=latents, f_latents=f_latents, label_syn=label_syn, G=G, save_this_it=save_this_it, args=args)
''' Train synthetic data '''
net = get_network(args.model, channel, num_classes, im_size, depth=args.depth, width=args.width).to(args.device) # get a random model
net.train()
net_parameters = list(net.parameters())
optimizer_net = torch.optim.SGD(net.parameters(), lr=args.lr_net) # optimizer_img for synthetic data
optimizer_net.zero_grad()
loss_avg = 0
args.dc_aug_param = None # Mute the DC augmentation when learning synthetic data (in inner-loop epoch function) in oder to be consistent with DC paper.
for ol in range(args.outer_loop):
''' freeze the running mu and sigma for BatchNorm layers '''
# Synthetic data batch, e.g. only 1 image/batch, is too small to obtain stable mu and sigma.
# So, we calculate and freeze mu and sigma for BatchNorm layer with real data batch ahead.
# This would make the training with BatchNorm layers easier.
BN_flag = False
BNSizePC = 16 # for batch normalization
for module in net.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
BN_flag = True
if BN_flag:
img_real = torch.cat([get_images(c, BNSizePC) for c in range(num_classes)], dim=0)
net.train() # for updating the mu, sigma of BatchNorm
output_real = net(img_real) # get running mu, sigma
for module in net.modules():
if 'BatchNorm' in module._get_name(): #BatchNorm
module.eval() # fix mu and sigma of every BatchNorm layer
if args.space == "wp":
with torch.no_grad():
image_syn_w_grad = torch.cat([latent_to_im(layer, G, (syn_image_split, f_latents_split), args) for
syn_image_split, f_latents_split, label_syn_split in
zip(torch.split(latents, args.sg_batch),
torch.split(f_latents, args.sg_batch),
torch.split(label_syn, args.sg_batch))])
else:
image_syn_w_grad = latents
# 根据论文说法先获得不含梯度计算图的图片S
if args.space == "wp":
image_syn = image_syn_w_grad.detach()
image_syn.requires_grad_(True)
else:
image_syn = image_syn_w_grad
''' update synthetic data '''
optimizer_img.zero_grad()
for c in range(num_classes):
loss = torch.tensor(0.0).to(args.device)
img_real = get_images(c, args.batch_real)
lab_real = torch.ones((img_real.shape[0],), device=args.device, dtype=torch.long) * c
img_syn = image_syn[c*args.ipc:(c+1)*args.ipc].reshape((args.ipc, channel, im_size[0], im_size[1]))
lab_syn = torch.ones((args.ipc,), device=args.device, dtype=torch.long) * c
if args.dsa:
seed = int(time.time() * 1000) % 100000
img_real = DiffAugment(img_real, args.dsa_strategy, seed=seed, param=args.dsa_param)
img_syn = DiffAugment(img_syn, args.dsa_strategy, seed=seed, param=args.dsa_param)
# 计算真实数据集上的梯度
output_real = net(img_real)
loss_real = criterion(output_real, lab_real)
gw_real = torch.autograd.grad(loss_real, net_parameters)
gw_real = list((_.detach().clone() for _ in gw_real))
# 计算蒸馏集上的梯度
output_syn = net(img_syn)
loss_syn = criterion(output_syn, lab_syn)
gw_syn = torch.autograd.grad(loss_syn, net_parameters, create_graph=True)
# 计算L_dc
loss = match_loss(gw_syn, gw_real, args)
# 这一步按照论文只反传L对S的梯度
loss.backward()
loss_avg += loss.item()
del img_real, output_real, loss_real, gw_real, output_syn, loss_syn, gw_syn, loss
if args.space == "wp":
# this method works in-line and back-props gradients to latents and f_latents
gan_backward(layer=layer, latents=latents, f_latents=f_latents, image_syn=image_syn, G=G, args=args)
else:
latents.grad = image_syn.grad.detach().clone()
# 完成一轮对图片的训练
optimizer_img.step()
optimizer_img.zero_grad()
if ol == args.outer_loop - 1:
break
''' update network '''
image_syn_train, label_syn_train = copy.deepcopy(image_syn.detach()), copy.deepcopy(label_syn.detach()) # avoid any unaware modification
dst_syn_train = TensorDataset(image_syn_train, label_syn_train)
trainloader = torch.utils.data.DataLoader(dst_syn_train, batch_size=args.batch_train, shuffle=True, num_workers=0)
# 在内循环使用蒸馏集训练网络
for il in range(args.inner_loop):
epoch('train', trainloader, net, optimizer_net, criterion, args, aug=True if args.dsa else False)
# 计算一类图片的平均损失
loss_avg /= (num_classes*args.outer_loop)
# 计算蒸馏数据与原数据集的特征距离
dist = get_dist(num_classes=num_classes, real_features=origin_features, image_syn=image_syn,
channel=channel, im_size=im_size, DiffAugment=DiffAugment, args=args)
if dist < dist_min:
dist_min = dist
record = it
if it % 10 == 0:
print('%s iter = %04d, loss = %.4f' % (get_time(), it, loss_avg))
if it == args.Iteration: # only record the final results
data_save.append([copy.deepcopy(image_syn.detach().cpu()), copy.deepcopy(label_syn.detach().cpu())])
if args.search:
latents, f_latents = results[record]
# 评估本层的latents和f_latents
# save_this_it, score = choose_optimal(layer=layer, latents=latents, f_latents=f_latents, label_syn=label_syn, G=G,
# best_score=best_score, testloader=testloader, model_eval_pool=model_eval_pool,
# channel=channel, num_classes=num_classes,
# im_size=im_size, args=args)
# if save_this_it:
# best_layer = layer
# best_score = score
# print(save_this_it, best_layer, best_score)
# scores.append(score)
f_latents = update_latents(latents=latents, f_latents=f_latents, G=G, current_layer=layer, args=args)
print('best layer {}, best score {} at iteration {}'.format(best_layer, best_score, flag))
print(scores)
if __name__ == '__main__':
import shared_args
parser = shared_args.add_shared_args()
parser.add_argument('--lr_img', type=float, default=1, help='learning rate for pixels or f_latents')
parser.add_argument('--lr_w', type=float, default=0.001, help='learning rate for updating synthetic latent w')
parser.add_argument('--lr_g', type=float, default=0.0001, help='learning rate for gan weights')
parser.add_argument('--lr_net', type=float, default=0.01, help='learning rate for updating network parameters')
parser.add_argument('--inner_loop', type=int, default=1, help='inner loop')
parser.add_argument('--outer_loop', type=int, default=1, help='outer loop')
parser.add_argument('--dis_metric', type=str, default='ours', help='distance metric')
parser.add_argument('--inter_iteration', type=int, default=100, help='inter training iterations')
args = parser.parse_args()
main(args)