From 8ebca51e32c1ea903b21ee8fdf45e24dbde8f7bd Mon Sep 17 00:00:00 2001 From: Philipp Schlegel Date: Mon, 16 Nov 2020 18:03:09 +0000 Subject: [PATCH] Dotprops.to_skeleton: carry over soma --- navis/core/neurons.py | 45 ++++++++++++++++++++++++++++++++++++++----- 1 file changed, 40 insertions(+), 5 deletions(-) diff --git a/navis/core/neurons.py b/navis/core/neurons.py index 5c2d1fcf..091cb449 100644 --- a/navis/core/neurons.py +++ b/navis/core/neurons.py @@ -64,6 +64,20 @@ def wrapper(*args, **kwargs): return wrapper +def requires_nodes(func): + """Return ``None`` if neuron has no nodes.""" + @functools.wraps(func) + def wrapper(*args, **kwargs): + self = args[0] + # Return 0 + if isinstance(self.nodes, str) and self.nodes == 'NA': + return 'NA' + if not isinstance(self.nodes, pd.DataFrame): + return None + return func(*args, **kwargs) + return wrapper + + def Neuron(x: Union[nx.DiGraph, str, pd.DataFrame, 'TreeNeuron', 'MeshNeuron'], **metadata): """Constructor for Neuron objects. Depending on the input, either a @@ -134,6 +148,11 @@ def __getattr__(self, key): data = getattr(self, key) if isinstance(data, pd.DataFrame) and not data.empty: return True + # This is necessary because np.any does not like strings + elif isinstance(data, str): + if data == 'NA' or not data: + return False + return True elif np.any(data): return True return False @@ -141,8 +160,12 @@ def __getattr__(self, key): key = key[key.index('_') + 1:] if hasattr(self, key): data = getattr(self, key, None) - if hasattr(data, '__len__'): + if isinstance(data, pd.DataFrame): + return data.shape[0] + elif utils.is_iterable(data): return len(data) + elif isinstance(data, str) and data == 'NA': + return 'NA' return None raise AttributeError(f'Attribute "{key}" not found') @@ -992,6 +1015,7 @@ def __getstate__(self): return state @property + @requires_nodes def edges(self) -> np.ndarray: """Edges between nodes. @@ -1075,19 +1099,24 @@ def core_md5(self) -> str: if self.has_nodes: data = np.ascontiguousarray(self.nodes[['node_id', 'parent_id', 'x', 'y', 'z']].values) + if xxhash: + return xxhash.xxh128(data).hexdigest() return hashlib.md5(data).hexdigest() @property + @requires_nodes def leafs(self) -> pd.DataFrame: """Leaf node table.""" return self.nodes[self.nodes['type'] == 'end'] @property + @requires_nodes def ends(self): """End node table (same as leafs).""" return self.leafs @property + @requires_nodes def branch_points(self): """Branch node table.""" return self.nodes[self.nodes['type'] == 'branch'] @@ -1145,7 +1174,7 @@ def is_tree(self) -> bool: @property def subtrees(self) -> List[List[int]]: - """List of subtrees (sorted by size) as sets of node IDs.""" + """List of subtrees. Sorted by size as sets of node IDs.""" return sorted(graph._connected_components(self), key=lambda x: -len(x)) @@ -1181,6 +1210,7 @@ def _set_connectors(self, v): restrict=False) @property + @requires_nodes def cycles(self) -> Optional[List[int]]: """Cycles in neuron if any. @@ -1265,6 +1295,7 @@ def soma(self, value: Union[Callable, int, None]) -> None: raise ValueError('Soma must be function, None or a valid node ID.') @property + @requires_nodes def root(self) -> Sequence: """Root node(s).""" roots = self.nodes[self.nodes.parent_id < 0].node_id.values @@ -1281,13 +1312,17 @@ def type(self) -> str: return 'navis.TreeNeuron' @property - def n_branches(self) -> int: + @requires_nodes + def n_branches(self) -> Optional[int]: """Number of branch points.""" return self.nodes[self.nodes.type == 'branch'].shape[0] @property - def n_leafs(self) -> int: + @requires_nodes + def n_leafs(self) -> Optional[int]: """Number of leafs.""" + if not not isinstance(self.nodes, pd.DataFrame): + return None return self.nodes[self.nodes.type == 'end'].shape[0] @temp_property @@ -2175,6 +2210,6 @@ def to_skeleton(self, scale_vec: float = 1) -> TreeNeuron: # Add some other relevant attributes directly if self.has_connectors: tn._connectors = self._connectors - tn._soma = tn._soma + tn._soma = self._soma return tn