diff --git a/fafbseg/flywire/annotations.py b/fafbseg/flywire/annotations.py index 27abe29..7be1eb7 100644 --- a/fafbseg/flywire/annotations.py +++ b/fafbseg/flywire/annotations.py @@ -74,6 +74,10 @@ PR_TABLE = {} +NUC_TABLES = {"default": "nuclei_v1", + "flywire_fafb_public": "nuclei_v1", + "flywire_fafb_production": "nuclei_v1", + "fanc_production_mar2021": "nucleus_mar2022"} COMMUNITY_ANNOTATION_TABLE = "neuron_information_v2" _annotation_tables = None _user_information = {} @@ -597,6 +601,61 @@ def get_cave_table(table_name: str, return data +@inject_dataset() +@lru_cache +def _get_empty_cave_table(table_name: str, + split_positions: bool = False, + fill_user_info: bool = False, + *, + dataset: Optional[str] = None): + """Get an empty version of given CAVE table. + + Parameters + ---------- + table_name : str + Name of the table. + fill_user_info : bool | full + Whether to fill in user information for the table. Only + relevant if table has a `user_id` column. If True, + will add a `user_name` column. If "full", will add + also add a `user_pi` column. + split_positions : bool + Whether to split x/y/z positions into separate columns. + dataset : "public" | "production" | "sandbox" | "flat_630", optional + Against which FlyWire dataset to query. If ``None`` will fall + back to the default dataset (see + :func:`~fafbseg.flywire.set_default_dataset`). + + Returns + ------- + table : pandas.DataFrame + + """ + # Get/Initialize the CAVE client + client = get_cave_client(dataset=dataset) + + navis.utils.eval_param(table_name, name='table_name', allowed_types=(str, )) + + query_table = retry(client.materialize.query_table) + data = query_table(table=table_name, + split_positions=split_positions, + limit=1) + data = data.iloc[0:0].copy() + + if fill_user_info and 'user_id' in data.columns: + data['user_name'] = '' + if fill_user_info == 'full': + data['user_pi'] = '' + + # There is some weird interaction with pandas and the .attrs if the attrs contain numpy arrays + if getattr(data, 'attrs', None): + for k, v in data.attrs.items(): + if isinstance(v, np.ndarray): + data.attrs[k] = v.tolist() + + return data + + @inject_dataset(disallowed=['flat_630', 'flat_571']) def delete_annotations(table_name: str, annotation_ids: list, @@ -779,6 +838,8 @@ def get_somas(x=None, if isinstance(x, navis.BaseNeuron): x = navis.NeuronList(x) + table_name = NUC_TABLES.get(dataset, NUC_TABLES['default']) + filter_in_dict = None if not isinstance(x, type(None)): if isinstance(x, navis.NeuronList): @@ -786,15 +847,22 @@ def get_somas(x=None, else: root_ids = make_iterable(x, force_type=np.int64) if materialization == 'auto': - materialization = find_mat_version(root_ids, - allow_multiple=True, - raise_missing=raise_missing, - dataset=dataset) + try: + materialization = find_mat_version(root_ids, + allow_multiple=True, + raise_missing=raise_missing, + dataset=dataset) + except MaterializationError as e: + if raise_missing: + raise e + else: + return _get_empty_cave_table(table_name, split_positions=split_positions, dataset=dataset) + if isinstance(materialization, np.ndarray): materialization = tuple(np.unique(materialization[materialization != 0]).tolist()) filter_in_dict = {'pt_root_id': root_ids} - nuc = get_cave_table('nuclei_v1', + nuc = get_cave_table(table_name, materialization=materialization, split_positions=split_positions, dataset=dataset, @@ -814,9 +882,7 @@ def get_somas(x=None, start = nuc[start_cols].values end = nuc[end_cols].values nuc.drop(start_cols + end_cols, inplace=True, axis=1) - nuc['rad_est'] = np.abs(start - end).max(axis=1) / 2 - - return nuc + nuc['rad_est'] = np.abs(start - end).max(axis=1) / 2 # If NeuronList, set their somas if isinstance(x, navis.NeuronList):