-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunitary-representations.tex
283 lines (217 loc) · 13.6 KB
/
unitary-representations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
\documentclass[12pt]{article}
\usepackage{enumitem}
\usepackage[hidelinks]{hyperref}
\usepackage[backend=bibtex, style=numeric, citestyle=numeric-comp]{biblatex}
\usepackage{amsmath,amssymb,amsfonts,amsthm}
\usepackage{mathrsfs}
\usepackage{tikz-cd}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{prop}[theorem]{Proposition}
\newtheorem{lem}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{dfn}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\theoremstyle{remark}
\newtheorem{rem}[theorem]{Remark}
\newtheorem{notation}[theorem]{Notation}
\newcommand{\catvar}[1]{\mathcal{#1}}
\newcommand{\CC}{\catvar{C}}
\newcommand{\DD}{\catvar{D}}
\newcommand{\PP}{\catvar{P}}
\newcommand{\II}{\catvar{I}}
\newcommand{\JJ}{\catvar{J}}
\newcommand{\Comp}{\mathbb{C}}
\newcommand{\Real}{\mathbb{R}}
\newcommand{\catname}[1]{\textup{\sffamily\textbf{#1}}}
\newcommand*{\Set}{\catname{Set}}
\newcommand*{\Grp}{\catname{Grp}}
\newcommand*{\Top}{\catname{Top}}
\newcommand*{\TopGrp}{\catname{TopGrp}}
\newcommand{\zee}{\mathbb{Z}}
\newcommand{\zeehat}{\hat{\mathbb{Z}}}
\newcommand*{\nor}{\mathcal{N}}
\newcommand{\Obj}[1]{\textup{Obj}(#1)}
\newcommand{\Mor}[1]{\textup{Mor}(#1)}
\newcommand{\Hom}[2]{\textup{Hom}(#1,#2)}
\newcommand{\End}[1]{\textup{End}(#1)}
\newcommand{\gcirc}{G^\circ}
\addbibresource{bibliography.bib}
\title{Unitary Representations}
\author{Navid Rashidian}
\date{}
\begin{document}
\maketitle
\section{Recap}
\subsection{Hilbert Spaces}
\begin{dfn}
A normed real (complex) vector space which is complete with respect to the norm metric is called a \emph{real (complex) Banach space}.
\end{dfn}
\begin{dfn}
Let $A,B$ be Banach spaces defined over the same field. A linear transformation $T\colon A\to B$ is a \emph{bounded operator} if there is constant $c\in\Real$ such that for every $v\in A$ we have $\|T(v)\|\leq c\|v\|$.
\end{dfn}
\begin{dfn}
Let $A$ be a Banach space endowed with a multiplication such that $A$ with its addition and multiplication form a ring. If for every scalar $\lambda$ we have $\lambda(ab)=(\lambda a)b$, and moreoever we have $\|ab\|\leq \|a\|\|b\|$, then $A$ is called a \emph{Banach algebra}. If, moreoever, $A$ has a multiplicative identity (denoted by $1_A$) it is called \emph{unital}.
\end{dfn}
\begin{dfn}
Let \( A, B \) be Banach spaces defined over the same field. Then a linear transformation \( T\colon A\to B \) is called bounded if there is a real constant \( c \) such that for every \( a \in A \), we have
\begin{equation} \label{eq:bounded_inequality}
\|T(a)\| \leq c \|a\|.
\end{equation}
\end{dfn}
\begin{prop}
A linear transformation between two Banach spaces is bounded if and only if it is continuous.
\end{prop}
\begin{proof}
See \cite[Ch. II, Prop. 1.1]{Conway1985}.
\end{proof}
\begin{notation}
The set of all bounded operators $T\colon A\to B$ between two Banach spaces is denoted by $\Hom{A}{B}$. In the particular case in which $A=B$, we have $\End{A}=\Hom{A}{A}$.
\end{notation}
\begin{dfn}
Let $H$ be a complex vector space. A function $\langle\ |\ \rangle\colon H\times H\to\Comp$ is \emph{positive definite Hermitian form} if it satifies the following conditions:
\begin{enumerate}
\item Positive definiteness: $\langle u|r\rangle$ is a non-negative integer for every $u\in H$ and is equal to zero if and only if $u$ equals zero.
\item Conjugate symmetry: For every $u,v\in H$, $\langle u|v\rangle = \overline{\langle v|u \rangle}$.
\item Linearity in the first variable: For every $\lambda,\mu\in\Comp$ and $u,v,w\in H$, $\langle\lambda u+\mu v|w\rangle=\lambda\langle u|w\rangle+\mu\langle u|v\rangle$.
\end{enumerate}
\end{dfn}
\begin{prop}
Let $H$ be a complex vector space and $\langle\ |\ \rangle$ a positive definite Hermitian form. Then the function $\|v\|=\sqrt{\langle v|v \rangle}$ defines a norm on $H$.
\end{prop}
\begin{dfn}
A complex vector space $H$ together with a positive definite Hermitian form is called a \emph{pre-Hilbert space}. If $H$ is complete with respect to the metric associated with the norm defined by the Hermitian form, it is called a \emph{Hilbert space}.
\end{dfn}
\begin{rem}
A Hilbert space is a complex Banach space and therefore a topological vector space.
\end{rem}
\begin{prop}
The set \( \End{H} \) for a Hilbert space \( H \) is a complex Banach algebra with pointwise addition and composition, and the norm of \( T \) defined as the smallest constant \( c \) that makes inequality \eqref{eq:bounded_inequality} true.
\end{prop}
\begin{prop}
Let $H$ be a Hilbert space. For every $T\in\End{A}$ there is a $T^*\in\End{H}$ called the \emph{adjoint of $T$} such that
$$
\langle Tv|u \rangle = \langle v|T^*u \rangle
$$
for every $u,v\in H$.
\end{prop}
\begin{prop}
The adjoint operator has the following properties for every $T\in\End{T}$:
\begin{enumerate}[label=(\roman*)]
\item Period Two: $T^{**}=T$.
\item Conjugate Linearity: $(\lambda_1 T_1+\lambda_2 T_2)^*=\bar{\lambda_1}T_1^*+\bar{\lambda_2}T_2^*$.
\item Antimultiplicativity: $(T_1T_2)^*=T_2^*T_1^*$.
\item $\|TT^*\|=\|T\|^2$.
\end{enumerate}
\end{prop}
\begin{dfn}
Let $A$ be a complex algebra. An operator $a\mapsto a^*$ is called an \emph{involution} if it has period two, is conjugate linear and is antimultiplicative. If, moreover, $A$ is a Banach algebra and we have $\|aa^*\|=\|a\|^2$ for every $a\in A$ we call $A$ a $C^*$-algebra. A function between complex algebras $A$ and $B$ that preserves the complex algebra and the $*$-operator is called a $*$-isomorphism.
\end{dfn}
\begin{example}
The complex numbers form a $C^*$-algebra with the involution operator defined as complex conjugation.
\end{example}
\begin{dfn}
Let $T\in\End{H}$ for a Hilbert space $H$. The transformation $T$ is called \emph{normal} if it commutes with $T^*$. It is called \emph{self-adjoint} or \emph{Hermitian} if $T^*=T$. It is called \emph{unitary} if $T^*=T^{-1}$. A subalgebra of $\End{H}$ is called \emph{self-adjoint} if it is closed under $^*$.
\end{dfn}
\begin{dfn}
Let $A$ be a complex Banach algebra and $a\in A$. Then, \emph{the spectrum of a} denoted by $\textup{sp}(a)$ is defined as
$$
\textup{sp}(a) = \{\lambda\in\Comp:\lambda 1_A-a\not\in A^\times\}
$$
\end{dfn}
\begin{prop}
Let $A$ be a complex Banach algebra and $a\in A$. The spectrum of $a$ is a $C^*$-algebra with involution defined as complex conjugation.
\end{prop}
\begin{prop}
Assume $T\in\End{H}$ is normal. Let $A_T$ be the smallest closed, self-adjoint, unital subalgebra of $\End{H}$ that contains $T$. Then $A_T$ is the closure of the subalgebra generated by $T$ and $T^*$ and is commutative.
\end{prop}
\begin{theorem}[First Spectral Theorem]
Assume $T\in\End{H}$ is normal. Then there exists an isometric $*$-isomorphism $\Phi\colon \mathscr{C}(\textup{sp}(T))\to A_T$ such that $\Phi(\iota_{\textup{sp}(a)})=T$.
\end{theorem}
\subsection{Group Representations}
\begin{dfn}
Let $G$ be a group and $V$ a complex vector space. Let $\textup{Aut}(V)$ denote the group of isomorphisms of $V$ onto itself. A homomorphism $\rho\colon G\to\textup{GL}(V)$ is called \emph{an abstract representation of $G$ in $V$}.
\end{dfn}
\begin{dfn}
Let $G$ be a group, $V,V'$ vector spaces and $\rho,\rho'$ representations of $G$ in, respectively, $V$ and $V'$. The representations $\rho$ and $\rho'$ are called \emph{equivalent} if there is an isomorphism $T\colon V \to V'$ such that
$ T\rho_g=\rho'_gT $
for every $g \in G$.
\end{dfn}
\begin{dfn}
Let $\rho$ and $\rho'$ be representations of a group $G$ on, respectively, $V$ and $W$. A \emph{$G$-linear map between $\rho$ and $\rho'$} is a linear transformation $\phi\colon V\to W$ such that for every $g\in G$ we have $\phi(\rho_g(v))=\rho'_g(\phi(v))$ for all $v\in V$.
\end{dfn}
\begin{dfn}
Let $\rho\colon G \to \textup{Aut}(V)$ be a representation of a group $G$ in a vector space $V$. A subspace $W$ of $V$ is called \emph{stable under the action of $G$} if for every $g$, $x \in W$ implies $\rho_g(x) \in W$.
\end{dfn}
\begin{dfn}
A representation $\rho\colon G \to \textup{Aut}(V)$ of a group $G$ in a vector space $V$ is called \emph{irreducible} if $V$ is not $0$ and if no subspace of $V$, save $0$ and $V$, is stable under $G$.
\end{dfn}
\begin{dfn}
A field $k$ subject to a certain topology is called a \emph{topological field} if both addition and multiplication are continuous with respect to the product topology on $k\times k$. A vector space $V$ subject to a certain topology over a topological field is called a \emph{topological vector space} if its underlying group is a topological group and scalar multiplication is continuous with respect to the product topology on $k \times V$
\end{dfn}
\begin{dfn}
Let $G$ be a locally compact topological group and $V$ a locally convex topological vector space over the complex numbers. An abstract representation $\rho\colon G\to\textup{Aut}(V)$ is called a \emph{topological representation} if the map $(g,x)\mapsto\rho_g(x)$ is continuous with respect to the product topology on $G\times V$.
\end{dfn}
\begin{rem}
The topology induced by a norm is generated by open balls and open balls are convex (see \cite[Ch. IV, \S 1]{Conway1985}). Therefore, for any normed space $V$ we could talk of representations of groups in $V$.
\end{rem}
\section{Unitary Representations}
% TODO
\begin{prop}
The Hermitian form on a pre-Hilbert space is a continuous linear functional.
\end{prop}
\begin{prop}
Let $H$ be a pre-Hilbert space and $\hat H$ its completion. Also, let $\lambda\colon H\to\mathbb{C}$ be a continuous linear functional. Then $\lambda$ extends uniquely to $\hat H$.
\end{prop}
\begin{proof}
Let $\hat \lambda((x_i)_{i\in\mathbb{N}})=\lim_{n\to\infty}\lambda(x_i)$. Since $\lambda$ is continuous, this is well-defined. Its uniqueness also follows from the fact that we suppose $\hat \lambda$ to be continuous. It is routine to check that $\hat \lambda$ respects addition and multiplication by scalars.
\end{proof}
\begin{corollary}
Let $H$ be a pre-Hilbert space and $\hat{H}$ its completion. Then the Hermitian form on $H$ can be extended to $\hat{H}$ and $\hat{H}$ will be complete with respect to the metric associated to the Hermitian form.
\end{corollary}
\begin{prop}
Let $T\in\End{H}$. There is a unique $\hat T\in\End{\hat H}$ such that $\hat T|_H = T$.
\end{prop}
\begin{corollary}
Let $H$ be a pre-Hilbert space and $T\in\End{H}$. There is a $T^*\in\End{H}$ such that
$$
\langle Tv|u \rangle = \langle v|T^*u \rangle
$$
for every $u,v\in H$.
\end{corollary}
\begin{dfn}
Let $H$ be a pre-Hilbert space. A bounded linear operator $T\in\End{H}$ is called \emph{pre-unitary} if we have
$\langle x|y \rangle = \langle T(x)|T(y) \rangle$
for every $x,y\in H$. For Hilbert spaces $H$ and $H'$ an isomorphism $T\colon H\to H'$ is called \emph{pre-unitary} if the same condition holds for every $x,y\in H$.
\end{dfn}
\begin{prop}
A bounded linear operator $T\in\End{H}$ is pre-unitary if and only if $T^*T=\textup{id}_H$.
\end{prop}
\begin{proof}
Assume $T^*T=1_H$. Then $\langle Tx|Ty \rangle = \langle x |T^*Ty \rangle = \langle x|y \rangle$. For the other side, let $A=T^*T-\textup{id}_H$. Obviously, for every $x\in H$ we have
$$
\langle x | Ax \rangle = \langle x | T^*Tx - x \rangle = \langle x | T^*Tx \rangle - \langle x | x \rangle = 0
$$
We now proceed to prove that any linear transformation $A$ with the property that for every $x\in H$ we have $\langle x | Ax \rangle$ is identically zero. For this let $x,y\in H$ and note that
\begin{align*}
\langle x+y | A(x+y) \rangle &= \langle x | Ax \rangle + \langle x | Ay \rangle + \langle y | Ax \rangle + \langle y | Ay \rangle \\
&= \langle x | Ay \rangle + \langle y | Ax \rangle \\
&= 0
\end{align*}
and
\begin{align*}
\langle x + iy | A(x + iy) \rangle &= \langle x + iy | Ax + iAy \rangle \\
&= \langle x | Ax \rangle + i \langle x | Ay \rangle - i \langle y | Ax \rangle + \langle y | Ay \rangle \\
&= i (\langle x | Ay \rangle - \langle y | Ax \rangle) \\
&= 0
\end{align*}
which imply $\langle x|Ay \rangle = 0$ for every $x,y\in H$. In particular $\langle Ax|Ax \rangle = 0$ which implies $Ax = 0$.
\end{proof}
\begin{dfn}
Let $\rho$ be a representation of a locally compact group $G$ on a pre-Hilbert space $H$. We call $\rho$ \emph{pre-unitary} if for every $g\in G$ topological automorphism $\rho_g$ is pre-unitary. If this happens the Hermitian form on $H$ is called \emph{invariant under $\rho(G)$}.
\end{dfn}
\begin{dfn}
Let $G$ be a group and $H,H'$ pre-Hilbert spaces. we call topological representations $\rho,\rho'$ of $G$ in, respectively, $H$ and $H'$ \emph{pre-unitarily equivalent} if there is a pre-unitary topological isomorphism $T\colon H\to H'$ such that $T\rho_g=\rho'_gT$ for every $g\in G$.
\end{dfn}
\printbibliography
\end{document}