forked from idea-iitd/graphgen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
executable file
·206 lines (150 loc) · 7.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import random
import shutil
from statistics import mean
import torch
from graphgen.train import predict_graphs as gen_graphs_dfscode_rnn
from baselines.graph_rnn.train import predict_graphs as gen_graphs_graph_rnn
from baselines.dgmg.train import predict_graphs as gen_graphs_dgmg
from utils import get_model_attribute, load_graphs, save_graphs
import metrics.stats
LINE_BREAK = '----------------------------------------------------------------------\n'
class ArgsEvaluate():
def __init__(self):
# Can manually select the device too
self.device = torch.device(
'cuda:0' if torch.cuda.is_available() else 'cpu')
self.model_path = 'model_save/' + 'model_name'
self.num_epochs = get_model_attribute(
'epoch', self.model_path, self.device)
# Whether to generate networkx format graphs for real datasets
self.generate_graphs = True
self.count = 2560
self.batch_size = 32 # Must be a factor of count
self.metric_eval_batch_size = 256
# Specific DFScodeRNN
self.max_num_edges = 50
# Specific to GraphRNN
self.min_num_node = 0
self.max_num_node = 40
self.train_args = get_model_attribute(
'saved_args', self.model_path, self.device)
self.graphs_save_path = 'graphs/'
self.current_graphs_save_path = self.graphs_save_path + self.train_args.fname + '_' + \
self.train_args.time + '/' + str(self.num_epochs) + '/'
def patch_graph(graph):
for u in graph.nodes():
graph.nodes[u]['label'] = graph.nodes[u]['label'].split('-')[0]
return graph
def generate_graphs(eval_args):
"""
Generate graphs (networkx format) given a trained generative model
and save them to a directory
:param eval_args: ArgsEvaluate object
"""
train_args = eval_args.train_args
if train_args.note == 'GraphRNN':
gen_graphs = gen_graphs_graph_rnn(eval_args)
elif train_args.note == 'DFScodeRNN':
gen_graphs = gen_graphs_dfscode_rnn(eval_args)
elif train_args.note == 'DGMG':
gen_graphs = gen_graphs_dgmg(eval_args)
if os.path.isdir(eval_args.current_graphs_save_path):
shutil.rmtree(eval_args.current_graphs_save_path)
os.makedirs(eval_args.current_graphs_save_path)
save_graphs(eval_args.current_graphs_save_path, gen_graphs)
def print_stats(
node_count_avg_ref, node_count_avg_pred, edge_count_avg_ref,
edge_count_avg_pred, degree_mmd, clustering_mmd, orbit_mmd,
nspdk_mmd, node_label_mmd, edge_label_mmd, node_label_and_degree
):
print('Node count avg: Test - {:.6f}, Generated - {:.6f}'.format(
mean(node_count_avg_ref), mean(node_count_avg_pred)))
print('Edge count avg: Test - {:.6f}, Generated - {:.6f}'.format(
mean(edge_count_avg_ref), mean(edge_count_avg_pred)))
print('MMD Degree - {:.6f}, MMD Clustering - {:.6f}, MMD Orbits - {:.6f}'.format(
mean(degree_mmd), mean(clustering_mmd), mean(orbit_mmd)))
print('MMD NSPDK - {:.6f}'.format(mean(nspdk_mmd)))
print('MMD Node label - {:.6f}, MMD Edge label - {:.6f}'.format(
mean(node_label_mmd), mean(edge_label_mmd)
))
print('MMD Joint Node label and degree - {:.6f}'.format(
mean(node_label_and_degree)
))
print(LINE_BREAK)
if __name__ == "__main__":
eval_args = ArgsEvaluate()
train_args = eval_args.train_args
print('Evaluating {}, run at {}, epoch {}'.format(
train_args.fname, train_args.time, eval_args.num_epochs))
if eval_args.generate_graphs:
generate_graphs(eval_args)
random.seed(123)
graphs = []
for name in os.listdir(train_args.current_dataset_path):
if name.endswith('.dat'):
graphs.append(len(graphs))
random.shuffle(graphs)
graphs_test_indices = graphs[int(0.90 * len(graphs)):]
graphs_train_indices = graphs[:int(0.90 * len(graphs))]
graphs_pred_indices = []
if not eval_args.generate_graphs:
for name in os.listdir(eval_args.current_graphs_save_path):
if name.endswith('.dat'):
graphs_pred_indices.append(len(graphs_pred_indices))
else:
graphs_pred_indices = [i for i in range(eval_args.count)]
print('Evaluating {}, run at {}, epoch {}'.format(
train_args.fname, train_args.time, eval_args.num_epochs))
print('Graphs generated - {}'.format(len(graphs_pred_indices)))
metrics.stats.novelity(
train_args.current_dataset_path, graphs_train_indices, eval_args.current_graphs_save_path,
graphs_pred_indices, train_args.temp_path, timeout=60)
metrics.stats.uniqueness(
eval_args.current_graphs_save_path,
graphs_pred_indices, train_args.temp_path, timeout=120)
# exit()
node_count_avg_ref, node_count_avg_pred = [], []
edge_count_avg_ref, edge_count_avg_pred = [], []
degree_mmd, clustering_mmd, orbit_mmd, nspdk_mmd = [], [], [], []
node_label_mmd, edge_label_mmd, node_label_and_degree = [], [], []
print(len(graphs_test_indices))
for i in range(0, len(graphs_pred_indices), eval_args.metric_eval_batch_size):
batch_size = min(eval_args.metric_eval_batch_size,
len(graphs_pred_indices) - i)
graphs_ref_indices = random.sample(graphs_test_indices, batch_size)
graphs_ref = load_graphs(
train_args.current_dataset_path, graphs_ref_indices)
graphs_ref = [patch_graph(g) for g in graphs_ref]
graphs_pred = load_graphs(
eval_args.current_graphs_save_path, graphs_pred_indices[i: i + batch_size])
graphs_pred = [patch_graph(g) for g in graphs_pred]
node_count_avg_ref.append(mean([len(G.nodes()) for G in graphs_ref]))
node_count_avg_pred.append(mean([len(G.nodes()) for G in graphs_pred]))
edge_count_avg_ref.append(mean([len(G.edges()) for G in graphs_ref]))
edge_count_avg_pred.append(mean([len(G.edges()) for G in graphs_pred]))
degree_mmd.append(metrics.stats.degree_stats(graphs_ref, graphs_pred))
clustering_mmd.append(
metrics.stats.clustering_stats(graphs_ref, graphs_pred))
orbit_mmd.append(metrics.stats.orbit_stats_all(
graphs_ref, graphs_pred))
nspdk_mmd.append(metrics.stats.nspdk_stats(graphs_ref, graphs_pred))
node_label_mmd.append(
metrics.stats.node_label_stats(graphs_ref, graphs_pred))
edge_label_mmd.append(
metrics.stats.edge_label_stats(graphs_ref, graphs_pred))
node_label_and_degree.append(
metrics.stats.node_label_and_degree_joint_stats(graphs_ref, graphs_pred))
print('Running average of metrics:\n')
print_stats(
node_count_avg_ref, node_count_avg_pred, edge_count_avg_ref, edge_count_avg_pred,
degree_mmd, clustering_mmd, orbit_mmd, nspdk_mmd, node_label_mmd,
edge_label_mmd, node_label_and_degree
)
print('Evaluating {}, run at {}, epoch {}'.format(
train_args.fname, train_args.time, eval_args.num_epochs))
print_stats(
node_count_avg_ref, node_count_avg_pred, edge_count_avg_ref, edge_count_avg_pred,
degree_mmd, clustering_mmd, orbit_mmd, nspdk_mmd, node_label_mmd,
edge_label_mmd, node_label_and_degree
)