From ee234c599cf40de722d4e603ff3a526311cd03bb Mon Sep 17 00:00:00 2001 From: Shubhanshu Mishra Date: Mon, 11 Apr 2022 16:25:02 -0500 Subject: [PATCH] Fixes #67 - Add monero --- biodatasets/monero/monero.py | 271 +++++++++++++++++++++++++++++++++++ 1 file changed, 271 insertions(+) create mode 100644 biodatasets/monero/monero.py diff --git a/biodatasets/monero/monero.py b/biodatasets/monero/monero.py new file mode 100644 index 00000000..4f5c0166 --- /dev/null +++ b/biodatasets/monero/monero.py @@ -0,0 +1,271 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +""" +This template serves as a starting point for contributing a dataset to the BigScience Biomedical repo. + +When modifying it for your dataset, look for TODO items that offer specific instructions. + +Full documentation on writing dataset loading scripts can be found here: +https://huggingface.co/docs/datasets/add_dataset.html + +To create a dataset loading script you will create a class and implement 3 methods: + * `_info`: Establishes the schema for the dataset, and returns a datasets.DatasetInfo object. + * `_split_generators`: Downloads and extracts data for each split (e.g. train/val/test) or associate local data with each split. + * `_generate_examples`: Creates examples from data on disk that conform to each schema defined in `_info`. + +TODO: Before submitting your script, delete this doc string and replace it with a description of your dataset. + +[bigbio_schema_name] = (kb, pairs, qa, text, t2t, entailment) +""" + +import os +from typing import List, Tuple, Dict + +import datasets +from utils import schemas +from utils.configs import BigBioConfig +from utils.constants import Tasks + +# TODO: Add BibTeX citation +_CITATION = """\ +@article{, + author = {}, + title = {}, + journal = {}, + volume = {}, + year = {}, + url = {}, + doi = {}, + biburl = {}, + bibsource = {} +} +""" + +# TODO: create a module level variable with your dataset name (should match script name) +# E.g. Hallmarks of Cancer: [dataset_name] --> hallmarks_of_cancer +_DATASETNAME = "[dataset_name]" + +# TODO: Add description of the dataset here +# You can copy an official description +_DESCRIPTION = """\ +This dataset is designed for XXX NLP task. +""" + +# TODO: Add a link to an official homepage for the dataset here (if possible) +_HOMEPAGE = "" + +# TODO: Add the licence for the dataset here (if possible) +# Note that this doesn't have to be a common open source license. +# Some datasets have custom licenses. In this case, simply put the full license terms +# into `_LICENSE` +_LICENSE = "" + +# TODO: Add links to the urls needed to download your dataset files. +# For local datasets, this variable can be an empty dictionary. + +# For publicly available datasets you will most likely end up passing these URLs to dl_manager in _split_generators. +# In most cases the URLs will be the same for the source and bigbio config. +# However, if you need to access different files for each config you can have multiple entries in this dict. +# This can be an arbitrarily nested dict/list of URLs (see below in `_split_generators` method) +_URLS = { + _DATASETNAME: "url or list of urls or ... ", +} + +# TODO: add supported task by dataset. One dataset may support multiple tasks +_SUPPORTED_TASKS = [] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] + +# TODO: set this to a version that is associated with the dataset. if none exists use "1.0.0" +# This version doesn't have to be consistent with semantic versioning. Anything that is +# provided by the original dataset as a version goes. +_SOURCE_VERSION = "" + +_BIGBIO_VERSION = "1.0.0" + + +# TODO: Name the dataset class to match the script name using CamelCase instead of snake_case +# Append "Dataset" to the class name: BioASQ --> BioasqDataset +class NewDataset(datasets.GeneratorBasedBuilder): + """TODO: Short description of my dataset.""" + + SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) + BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) + + # You will be able to load the "source" or "bigbio" configurations with + # ds_source = datasets.load_dataset('my_dataset', name='source') + # ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio') + + # For local datasets you can make use of the `data_dir` and `data_files` kwargs + # https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits + # ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files") + # ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files") + + # TODO: For each dataset, implement Config for Source and BigBio; + # If dataset contains more than one subset (see examples/bioasq.py) implement for EACH of them. + # Each of them should contain: + # - name: should be unique for each dataset config eg. bioasq10b_(source|bigbio)_[bigbio_schema_name] + # - version: option = (SOURCE_VERSION|BIGBIO_VERSION) + # - description: one line description for the dataset + # - schema: options = (source|bigbio_[bigbio_schema_name]) + # - subset_id: subset id is the canonical name for the dataset (eg. bioasq10b) + # where [bigbio_schema_name] = (kb, pairs, qa, text, t2t, entailment) + + BUILDER_CONFIGS = [ + BigBioConfig( + name="[dataset_name]_source", + version=SOURCE_VERSION, + description="[dataset_name] source schema", + schema="source", + subset_id="[dataset_name]", + ), + BigBioConfig( + name="[dataset_name]_bigbio_[bigbio_schema_name]", + version=BIGBIO_VERSION, + description="[dataset_name] BigBio schema", + schema="bigbio_[bigbio_schema_name]", + subset_id="[dataset_name]", + ), + ] + + DEFAULT_CONFIG_NAME = "[dataset_name]_source" + + def _info(self) -> datasets.DatasetInfo: + + # Create the source schema; this schema will keep all keys/information/labels as close to the original dataset as possible. + + # You can arbitrarily nest lists and dictionaries. + # For iterables, use lists over tuples or `datasets.Sequence` + + if self.config.schema == "source": + # TODO: Create your source schema here + raise NotImplementedError() + + # EX: Arbitrary NER type dataset + # features = datasets.Features( + # { + # "doc_id": datasets.Value("string"), + # "text": datasets.Value("string"), + # "entities": [ + # { + # "offsets": [datasets.Value("int64")], + # "text": datasets.Value("string"), + # "type": datasets.Value("string"), + # "entity_id": datasets.Value("string"), + # } + # ], + # } + # ) + + # Choose the appropriate bigbio schema for your task and copy it here. You can find information on the schemas in the CONTRIBUTING guide. + + # In rare cases you may get a dataset that supports multiple tasks requiring multiple schemas. In that case you can define multiple bigbio configs with a bigbio_[bigbio_schema_name] format. + + # For example bigbio_kb, bigbio_t2t + elif self.config.schema == "bigbio_[bigbio_schema_name]": + # e.g. features = schemas.kb_features + # TODO: Choose your big-bio schema here + raise NotImplementedError() + + return datasets.DatasetInfo( + description=_DESCRIPTION, + features=features, + homepage=_HOMEPAGE, + license=_LICENSE, + citation=_CITATION, + ) + + def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: + """Returns SplitGenerators.""" + # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration + + # If you need to access the "source" or "bigbio" config choice, that will be in self.config.name + + # LOCAL DATASETS: You do not need the dl_manager; you can ignore this argument. Make sure `gen_kwargs` in the return gets passed the right filepath + + # PUBLIC DATASETS: Assign your data-dir based on the dl_manager. + + # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs; many examples use the download_and_extract method; see the DownloadManager docs here: https://huggingface.co/docs/datasets/package_reference/builder_classes.html#datasets.DownloadManager + + # dl_manager can accept any type of nested list/dict and will give back the same structure with the url replaced with the path to local files. + + # TODO: KEEP if your dataset is PUBLIC; remove if not + urls = _URLS[_DATASETNAME] + data_dir = dl_manager.download_and_extract(urls) + + # TODO: KEEP if your dataset is LOCAL; remove if NOT + if self.config.data_dir is None: + raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") + else: + data_dir = self.config.data_dir + + # Not all datasets have predefined canonical train/val/test splits. + # If your dataset has no predefined splits, use datasets.Split.TRAIN for all of the data. + + return [ + datasets.SplitGenerator( + name=datasets.Split.TRAIN, + # Whatever you put in gen_kwargs will be passed to _generate_examples + gen_kwargs={ + "filepath": os.path.join(data_dir, "train.jsonl"), + "split": "train", + }, + ), + datasets.SplitGenerator( + name=datasets.Split.TEST, + gen_kwargs={ + "filepath": os.path.join(data_dir, "test.jsonl"), + "split": "test", + }, + ), + datasets.SplitGenerator( + name=datasets.Split.VALIDATION, + gen_kwargs={ + "filepath": os.path.join(data_dir, "dev.jsonl"), + "split": "dev", + }, + ), + ] + + # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` + + # TODO: change the args of this function to match the keys in `gen_kwargs`. You may add any necessary kwargs. + + def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: + """Yields examples as (key, example) tuples.""" + # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. + + # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. + + # NOTE: For local datasets you will have access to self.config.data_dir and self.config.data_files + + if self.config.schema == "source": + # TODO: yield (key, example) tuples in the original dataset schema + for key, example in thing: + yield key, example + + elif self.config.schema == "bigbio_[bigbio_schema_name]": + # TODO: yield (key, example) tuples in the bigbio schema + for key, example in thing: + yield key, example + + +# This template is based on the following template from the datasets package: +# https://github.com/huggingface/datasets/blob/master/templates/new_dataset_script.py + + +# This allows you to run your dataloader with `python [dataset_name].py` during development +# TODO: Remove this before making your PR +if __name__ == "__main__": + datasets.load_dataset(__file__)