-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpytorchtest.py
executable file
·120 lines (95 loc) · 3.38 KB
/
pytorchtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python3
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
from captcha_dataset import CaptchaDataset
from model import NeuralNetwork
alpha_conf = 1
alpha_class = 10
alpha_shift = 1
MODEL_FILE = "model.pt"
# dimensions
# 0 - picture
# 1 - feature
# 2 - none
# 3 - position
def custom_loss(output, target):
# dimensions
# 0 - picture
# 1 - none
# 2 - position
# 3 - feature
output_r = output.permute(0, 2, 3, 1)
target_r = target.permute(0, 2, 3, 1)
output_confidence = torch.sigmoid(output_r[:, 0, :, 0])
target_confidence = target_r[:, 0, :, 0]
target_mask = torch.where(target_confidence>0, 1, 0)
output_category = nn.functional.softmax(output_r[:, 0, :, 1:11], -1)
target_category = target_r[:, 0, :, 1:11]
output_shift = torch.sigmoid(output_r[:, 0, :, 11])
target_shift = target_r[:, 0, :, 11]
loss_confidence = torch.mean((output_confidence - target_confidence)**2)
loss_category = torch.mean(torch.sum((output_category-target_category)**2, -1)*target_mask)
loss_shift = torch.mean((((output_shift-target_shift)**2)*target_mask))
return alpha_conf*loss_confidence+alpha_class*loss_category+alpha_shift*loss_shift
batch_size = 64
training_data = CaptchaDataset(batch_size*200)
test_data = CaptchaDataset(batch_size*1)
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
model = NeuralNetwork().to(device)
print(model)
loss_fn = custom_loss
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
try:
checkpoint = torch.load(MODEL_FILE)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
except:
pass
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
test_loss /= num_batches
print(f"Test Error: \n Avg loss: {test_loss:>8f} \n")
epochs = 20
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, MODEL_FILE )
print("Done!")