Make sure you have installed Nvidia driver (version > 530), CUDA (version > 12) and Docker.
Pull the docker images:
docker pull zmu913/mm811project:latest
Then clone dynamic 3dgs code into your current working directory:
git clone --recursive https://github.com/mzgsxs/3dgs-uoa-mm.git
cd 3dgs-uoa-mm
git checkout d3dgs-soft-bg
cd ..
Then clone render code into your current working directory:
git clone --recursive https://github.com/JonathonLuiten/diff-gaussian-rasterization-w-depth.git
Download pretrained models, and training data
wget https://omnomnom.vision.rwth-aachen.de/data/Dynamic3DGaussians/output.zip
unzip output.zip
wget https://omnomnom.vision.rwth-aachen.de/data/Dynamic3DGaussians/data.zip
unzip data.zip
Start your docker in nvidia-runtime mode with source code mounted in container:
docker run --rm --runtime=nvidia --gpus all \
-e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix \
-v $PWD/3dgs-uoa-mm:/root/Dynamic3DGaussians \
-v $PWD/diff-gaussian-rasterization-w-depth:/root/Dynamic3DGaussians/diff-gaussian-rasterization-w-depth \
-v $PWD/data:/root/Dynamic3DGaussians/data \
-v $PWD/output:/root/Dynamic3DGaussians/output \
-it zmu913/mm811project:0.1 bash
In side docker, go to directory
cd /root/Dynamic3DGaussians/
Visualize pre-trianed dynamic 3dgs
python visualize.py
Trian soft bg dynamic 3dgs by you self
python train.py